
3/5/2018

Administrative and course introduction 1

Programming Fundamentals In VBA (Visual
Basic For Applications)

You will learn about basic program writing tools such as input-
output, variables, branching and looping mechanisms.

Online support: https://support.office.com/en-US/article/create-or-run-a-macro-c6b99036-
905c-49a6-818a-dfb98b7c3c9c

B.A.S.I.C.

• Beginner’s All-Purpose Symbolic Instruction Code (BASIC)
– From: www.acm.org (original full article: http://time.com/69316/basic/)

• A widely used programming language

• It was relatively simple to learn (statements were “English-like”
e.g., “if-then”)

• Widely popular and it was commonly packaged with new
computers in the 1970’s and 1980’s

• (A then relatively unknown company: Microsoft got it’s initial
cash inflows and reputation producing several versions of the
language)

https://support.office.com/en-US/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c
http://www.acm.org/
http://time.com/69316/basic/

3/5/2018

Administrative and course introduction 2

Visual Basic

• A newer programming language developed by Microsoft

• It was designed to make it easy to add practical and useful
features to computer programs e.g., programmers could add a
graphic user interface, database storage of information etc.

• Also it can take advantage of the built in capabilities of the
various versions of the Windows operating system
– Why write a feature of a program yourself when it already “comes with

the computer”

• For more information:
– http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

Visual Basic For Applications (VBA)

• Shares a common core with Visual Basic.
– Statements ‘look’ similar

• Unlike Visual Basic, VBA programs aren’t written in isolation
(creating a program just for it’s own sake).
– Most programs are written to be standalone: a computer game can be

run without (say) running a web browser or MS-Office.

• VB = Visual Basic, VBA = Visual Basic for Applications

• Each VBA program must be associated with a ‘host’ application
(usually it’s Microsoft office document such as MS-Word but
other applications can also be augmented by VBA programs).
– The host application is enhanced or supplemented by the VBA program

– “Why doesn’t this stupid word processor have this feature??!!”

- Now you can add that feature yourself using VBA

http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

3/5/2018

Administrative and course introduction 3

Visual Basic For Applications (VBA): 2

• Important! Because every VBA program must be run within
the context of host application when you are learning to write
your programs do not open up an important MS-Word
document and run your programs.
– The host program often needs an Word document in order to run certain

capabilities.

– VBA programs often change documents (formatting, style, text).

– Therefore use only small ‘test’ MS-Word documents when running your
VBA programs otherwise your information may be lost or corrupted.

Macros

• Macro: a sequence of keystrokes or mouse selections
(instructions to the computer) that can be repeated over and
over
– MS-Office can be augmented by writing Macros (essentially computer

programs) that will run either for multiple documents or only for a
particular document.

– In this class we will focus solely on MS-Word macro programming

• VBA (as guessed) is an example of a macro programming
language e.g., you can write a program that includes a series of
formatting and other commands that you frequently carry out
in Word documents

• Write the commands once in the form of a program and just
re-run this program instead of re-entering each command

3/5/2018

Administrative and course introduction 4

Macros And The Web-Based Office

• According to Microsoft macros are not accessible via their
online Office products:

–https://support.office.com/en-us/article/Differences-between-using-a-workbook-in-
the-browser-and-in-Excel-f0dc28ed-b85d-4e1d-be6d-
5878005db3b6?CorrelationId=917b1609-97e9-4cc7-9eeb-d188939ad740&ui=en-
US&rs=en-US&ad=US

• Result: use a computer with the desktop version of Office
installed.
– 203 lab

– Other campus computers

• Some ‘labs’ may have open access hours

– It is CRUICIAL that you test your program on the computers in the 203 lab
because your assignment must work on the lab machines in order to
receive credit.

Writing Macros

• It is not assumed that you have any prior experience writing
computer programs (macro language or something else).

• Consequently early examples and concepts will be quite
rudimentary i.e., “we will go slow”
– The effect is that you may find that the capabilities of the early examples

will duplicate familiar capabilities already built into MS-Word

• Why are we writing a macro program for this feature?

• Makes it easier to understand (you know the expected result).

• Keeps the example simpler.

• Later examples will eventually demonstrate the ‘power’ of
macros
– You can do things that would be impossible (or at least difficult) with the

default capabilities built into MS-Word

https://support.office.com/en-us/article/Differences-between-using-a-workbook-in-the-browser-and-in-Excel-f0dc28ed-b85d-4e1d-be6d-5878005db3b6?CorrelationId=917b1609-97e9-4cc7-9eeb-d188939ad740&ui=en-US&rs=en-US&ad=US

3/5/2018

Administrative and course introduction 5

Assignments: 203 vs. 217

• Program size (CPSC 217 non-majors programming class):
– A text-based computer game “The hobbit”: 677 line program

• Program size (this class):
– VBA (changing the capabilities of MS-Word): 60 line program

– JavaScript (running a program through a web page): 70 line program

Final Exam: Programming Questions

• Average grades (programming questions, final exam):
– The values indicate that the typical student shows a reasonable grasp of

the material (i.e., they did “get through it”)

– In order to do well you need to be coming to class and doing extra work:

• The absolute minimum workload is to complete the assignment

• Write and trace as many programs as you have time for

• The more practice you get, the more skilled and knowledgeable you will become

3/5/2018

Administrative and course introduction 6

Can You Complete The Following Tasks?

• Open a MS-Word document and replace every instance of one
phrase e.g., tamj@ucalgary.ca with another
tamj@cpsc.ucalgary.ca

• Open every document in a folder and perform the same search
and replace operation:
– 2 documents?

– 10 documents?

– 100 documents?

– All the documents in a particular folder?

– What if you just wanted to open the word documents with a particular
word or phrase in the name e.g., “assignments_2014”?

• This is an example where writing a macro once is a more
efficient approach
– One answer to the question: “Why are we learning this???”

Advanced Use Of Macros

• Although it’s beyond the scope of this class the following
example is introduced now to make you aware of the power of
VBA and macro languages.
– It can actually be used to perform real tasks.

• You can use a macro to take advantage of the capabilities of
each MS-Office application:
– Establishing references to applications to ‘link’ them

– Take the output from one application and making it the input of another.

mailto:tamj@ucalgary.ca
mailto:tamj@cpsc.ucalgary.ca

3/5/2018

Administrative and course introduction 7

Advanced Use Of Macros (2)

• Example: macros can automate the following task
– Store data in MS-Access

– Store the query results in MS-Excel and perform calculations on the data

– Use the formatting capabilities of MS-Word to produce reports

– MS-Outlook can email the final documents

Viewing The ‘Developer’ Ribbon (MS-Word)

• The macro programming capability comes built-in to the MS-
Office suite.
– You simply have to enable that functionality

• Steps

1. Select the ‘File’ ribbon 2. Select ‘options’

3/5/2018

Administrative and course introduction 8

Viewing The ‘Developer’ Ribbon (MS-Word): 2

3A) Select “customize the ribbon” 3B) Check the ‘Developers’ box

Viewing The ‘Developer’ Ribbon (MS-Word): 3

• This should add a new ribbon “Developer”

3/5/2018

Administrative and course introduction 9

• You may or may not be able to edit the MS-Word ribbon with
some computer labs.
– Or the changes you make to Word only last until you logout.

• You can see view macros via the ‘view’ tab on the ribbon
(albeit with fewer options)

Alternate: View And Run Macros

Macros And Computer Security

• Computer viruses are simply malicious computer programs.

• Macros can be a useful mechanism for reducing repetition or
adding new capabilities to MS-Office.

• But as is the case when writing a computer program malicious
code can also be written with a macro and the virus can be
activated by just opening the MS-office document that
contains the macro.

• Just because you are writing macro programs does not mean
that you shouldn’t take macro security seriously!

3/5/2018

Administrative and course introduction 10

Examples Macros Viruses

• “Melissa”: Information about an old but ‘successful’ Macro
Virus
– http://www.cnn.com/TECH/computing/9903/29/melissa.02.idg/index.html?_s=PM:TECH

– http://www.symantec.com/press/1999/n990329.html

– http://support.microsoft.com/kb/224567

• Macro viruses aren’t just “ancient history”, take the potential
threat seriously!
– http://www.symantec.com/avcenter/macro.html

– http://www.microsoft.com/security/portal/threat/encyclopedia/search.aspx?query=Virus

– http://ca.norton.com/search?site=nrtn_en_CA&client=norton&q=macro+virus

Which Document Contains A Macro?

http://www.symantec.com/press/1999/n990329.html
http://www.symantec.com/press/1999/n990329.html
http://support.microsoft.com/kb/224567
http://www.symantec.com/avcenter/macro.html
http://www.microsoft.com/security/portal/threat/encyclopedia/search.aspx?query=Virus
http://ca.norton.com/search?site=nrtn_en_CA&client=norton&q=macro+virus

3/5/2018

Administrative and course introduction 11

Question: What Is The Security Difference?

• Opening the following documents:
– Document.docm

– Document.docx

– Document.doc

Types Of Documents That Can Contain Macros
(Type ‘M’)

• You can store the macros that you write for this class this way
– In a single document ‘doc-m’ document

• You can also store macros in these documents (not for this
class but important to be aware in terms of computer
security).
– Normal ‘dot-m’ template i.e. “Normal.dotm”

• Default template used to produce all Word documents (formatting, layout etc.)

– Custom ‘dot-m’ template e.g. “histPaper.dotm”, “psychPaper.dotm”…

• You can override the default by creating your own template documents

3/5/2018

Administrative and course introduction 12

Viewing File Information: Learning What Type Of File
Is That Word Document

• View details: select ‘view’ in a folder

Viewing File Suffixes

• In a folder select: Tools->Folder options

• Under the ‘view’ tab uncheck ‘Hide extensions for known file
types’

3/5/2018

Administrative and course introduction 13

.DOCX (And .XLSX, .PPTX)

• These types of files cannot have macros attached to them.
– Reduced capabilities (no macros) but increased security (no macros)

• Question: Are these files with these extensions 100% safe?

File name
extensions hidden

Enabling the display of
file name extensions

Macros And Security

• Cannot contain macros
– MS-Office files that really end in ‘x’ e.g. “docx”, “xlsx”, “pptx” etc.

– When you save a document in Office 2007 (or newer) it will in one of
these file types.

• May contain macros
– Template documents, end in dot-m e.g. Normal.dotm

– Older (Office 97 to 2003) Office documents e.g. “doc”, “xls”, “ppt” etc.

– Macro-enabled documents, end in m e.g. “docm”, “xlsm”, “pptm”

3/5/2018

Administrative and course introduction 14

Enabling Macros To Run

• If you can' t run macros in MS-office (you see odd error
messages) then examine the "Trust Center“ settings in Word

1. Select the ‘File’ ribbon 2. Select ‘options’

Enabling Macros To Run (2)

3A) Select “Trust Center” 3B) Select “Trust Center Settings”

3/5/2018

Administrative and course introduction 15

Enabling Macros To Run (3)
4A) Select “Macro Settings” 4B) Select “Disable all macros with notification”

5) Exit MS-Word (close ALL documents)

More
secure

Less
secure

Enabling Macros To Run (4)

• The default setting for MS-Word should already be set to
“disable macros with notification” but these steps will allow
you to use machines that aren’t set to default values.

3/5/2018

Administrative and course introduction 16

Effect: Opening Word Documents

• Using the default setting will disable all macros by default
(safer approach) but you can still enable the macros as the
document is opened.

JT’s caution
• You should NOT casually

select this option for all MS-
Word documents

• It’s recommended that you
ONLY enable macros you
have created (or the lecture
examples)

Macro Security

• DO NOT take the ‘easy’ way out

NO!

More
secure

Less
secure

For more information:
http://www.office.microsoft.com/en-us/help/enable-or-disable-macros-in-office-documents-HA010031071.aspx

http://www.office.microsoft.com/en-us/help/enable-or-disable-macros-in-office-documents-HA010031071.aspx

3/5/2018

Administrative and course introduction 17

Creating Macros

1. Record the macro automatically: keystrokes and mouse
selections will be stored as part of the macro (you will be
briefly shown how to do this in tutorial)

2. Manually enter the Macro (type it in yourself into the VBA
editor)
• This is how you are to complete your assignment and is how many VBA

programs are created.

The Visual Basic Editor

• You don’t need to familiarize yourself with every detail of the
editor in order to create VBA programs.

• Just a few key features should be sufficient

• Starting the editor:
–Because VBA programs are associated with an office application open the

editor from MS-Word

–Click the “Visual Basic” icon under “Developer”

3/5/2018

Administrative and course introduction 18

Overview Of The Important Parts Of The VBA
Editor

Save Cut, copy,
paste

Find,
replace

Undo,
redo

Run, pause,
stop (VBA
subroutine
program)

Current
location

Program
editor

Export:

Useful for
transferring or
backing up
your work

Help lookup

VBA Editor: Don’t Mix It Up With The Word Editor

3/5/2018

Administrative and course introduction 19

Viewing Macros

• All macros that you have created can be viewed in the VBA
macro editor:
– Macros manually entered in the editor (Message Box example)

– Macros automatically recorded (not covered in lecture but in tutorial)

Writing A Program In The VBA Editor

• Format:
' Program documentation goes here (more on this later)

sub <sub-program name>()

End Sub

• Example:
' Author, version, features etc.
Sub first_example_macro_info()

MsgBox ("Congratulations! This your first computer
program")

End Sub

• Note: large VBA programs have multiple (sub) parts but for this
class you only need to define a single ‘sub’.

Instructions in the body of program (indent 4 spaces)

3/5/2018

Administrative and course introduction 20

Program Structure And The ‘Sub’ Keyword

• Sub stands for ‘subroutine’ or a portion of a VBA program
Format:
Sub <subroutine name>()

<Instructions in the subroutine>

End Sub

• Example:
Sub First_Example_Macro_Info()

End Sub

• Unless otherwise told all VBA program statements must be
inside the subroutine

Header, start of subroutine:

1. Has word ‘Sub’
2. Name of subroutine
3. Set of brackets

End of subroutine:

• Has ‘End Sub’

Note: all lines in between are
indented (4 spaces)

The ‘Sub’ Keyword: 2

• Real world VBA programs will be broken down into multiple
‘subs’ (subroutines or program parts)

• Again: Because this is only brief introduction into writing VBA
programs you will only have to define one subroutine for your
assignment.

3/5/2018

Administrative and course introduction 21

Naming The Subroutine

• This is what follows the ‘sub’ keyword.

• Example
Sub formattingResume

End Sub

• Naming standards:
– The name chosen should summarize what the program is supposed to

do.

– The choice of the name will play a role in determining your assignment
grade.

Choosing A Name: VBA Technical Requirements

• Must start with an alphabetic letter, after than any
combination of letters and numbers may be used
– OK: “assigment1”, “a2939” Not OK: “1assignment”,

“*assignment”

• Maximum length of 80 characters

• It cannot contain spaces, punctuation or special characters
such as # or !
– ‘resume headings’ (Not Allowed: space character)

– ‘macros!’ (Not Allowed: special character)

• Can contain underscores (separate long names)

3/5/2018

Administrative and course introduction 22

VBA Programming: How To Study

• At the very least: try typing the programs into the VBA editor
or cutting and pasting them yourself (watch for altered
characters such as quotes)

• For the more complex programs (end of this section as well as
the next section) try re-creating the programs on your own:
– Think about what tasks are accomplished by my solution program

– Without looking at my solution try entering into the program into the
VBA editor to accomplish these same tasks

• With programming you learn by “doing yourself” rather than
by watching someone else ‘do’

Sub first_example
MsgBox(“This

First VBA Example

• Learning Objectives:
– Creating/running a VBA program

– Creating a Message Box “MsgBox”

• Reminder steps (since this is your first example)
– Start up the application (MS-Word)

– Invoke the VBA editor: Developer->Visual Basic

– If successful you should see something similar to the image

Enter your program
instructions here
(program editor)

3/5/2018

Administrative and course introduction 23

First VBA Example (2)

• Type in or cut-and-paste the following example into the VBA
editor (see last image for location of the editor, previous slide)
– This is NOT the same as pasting it directly into MS-Word.

– Word document containing the macro (empty document see the macro
editor for the important details): 1firstExampleMacro.docm

Sub first_example_macro_info()
MsgBox ("This is your first computer program")

End Sub

Reminder: Running Macros

• (You must first have the ‘developer’ tab visible).

• Developer->Macros

• The single macro should be highlighted, then click ‘run’

3/5/2018

Administrative and course introduction 24

Running VBA Programs You Have Entered (2)

• Or you can run the program right after you have entered it (in
the editor).

1. Ensure correct
program “sub” is
to be executed
(click there)

2. Press the
‘play/run’ button
or “F5”

Structure Of VBA Programs: Reminder Of Important
Points

• As you just saw a program must begin
with the “sub” keyword followed by
the name of the “subroutine” (sub-
part of the program).

• It also ends with end “end sub”

• Important style requirement: The
part between the ‘sub’ and ‘end sub’
must be indented by 4 spaces (8
spaces if sub-indenting is used – next
set of notes).

sub first_example_macro()

end Sub

MsgBox("Congrats!")

3/5/2018

Administrative and course introduction 25

Saving Your Macro

You can save your macro into a Word document:

1. Create a new Word document

2. Save the document as a macro-enable document (Word
document that has a macro computer program embedded
within it).

Saving Your Macro (2)

3. Next you have tell Word that you want to save your macro
program inside this macro-enabled document.

– By default when you save your macros Word will select “Normal.dotm”
(All documents) as the location.

• DO NOT save your macro in this document:

–You will have trouble transferring your macro to other computers

–Because “Normal.dotm” is the default template used to create some Word documents
it may result in security warnings (all Word documents will have macros included)

3/5/2018

Administrative and course introduction 26

Saving Your Macro (3)

– Instead: Save your macro in your current document (in the example
below it’s “Assignment4.docm”.

• Transferring this document will allow the macros to be transferred as well.

Transferring Your Macros (This Class)

• If you create a macro-enabled MS-Word document (file name
suffix “.docm”) then transfer the Word document itself.

• Save the macro enabled word document to your portable USB
flash drive

• OR

• Save the template document on your web disk drive (or any
other ‘cloud’ storage system such as Dropbox.com)
– To download files stored on web disk onto another computer:

https://webdisk.ucalgary.ca/

3/5/2018

Administrative and course introduction 27

Message Box

• (Details of the previous example)

• Creates a popup window to output information from your
program

• Useful for testing
– Is my program working?

–Which part is running?

• Also useful for displaying status messages about the current
state of the program

Creating A Message Box

• Format:
MsgBox ("<Message to appear>")

• Example:

MsgBox ("This your first computer program")

Notes on ‘Format’:
•Italicized: you have a choice for this part
•Non-italicized: mandatory (enter it as-is)
•Don’t type in the angled brackets (used to help you visually group)

3/5/2018

Administrative and course introduction 28

VBA Visual Aids: Function Arguments

• As you type in the name of VB functions you will see visual
hints about the arguments/inputs for the function.

– JT: You won’t need to worry about all functional arguments for this class.

– Enter the function name and then a space

Function arguments

(Bold): mandatory
arguments

VBA Visual Aids: Error Information

• The requirements for forming VBA programming instructions
are referred to as the ‘syntax’ (grammar/rules) of the language.

• Syntax violations are visually highlighted in VBA:

Required argument missing

Specific
statement/instruction
causing the error (red font)

Part of program that contains
errors (yellow highlight)

3/5/2018

Administrative and course introduction 29

Basic Mathematical Operators

Operation Symbol used in VBA Example

Addition + 2 + 2

Subtraction - 3 – 2

Multiplication * 10 * 10

Division / 81 / 9

Exponent ^ 2 ^ 3

Variables

• Used to temporarily store information at
location in memory

• Variables must be declared (created) before
they can be used.

• Format for declaration:
Dim <Variable name> as <Type of variable>

• Example declaration:
Dim BirthYear as Long

CPSC mail

TAM

3/5/2018

Administrative and course introduction 30

Common Types Of Variables

Type of information
stored

VBA Name Example variable
declaration

Default Value

Whole numbers Long Dim LuckyNumber
as Long

0

Real numbers Double Dim MyWeight As
Double

0

Chararacters1 String2 Dim Name As
String

Empty string

Date3 Date Dim BirthDate As
Date

00:00:00

1) Any visible character you can type and more e.g., ‘Enter’ key
2) Each string can contain up to a maximum of 2 billion characters
3) Format: Day/month/year

Examples Of Assigning Values To
Variables

Note: some types of variables requires some
mechanism to specify the type of information to be
stored:
• Strings: the start and end of the string must be marked with double

quotes "

• Date: the start and end of the string must be marked with the number
sign #

Dim LuckyNumber As Long

LuckyNumber = 888

Dim BirthDay As Date

BirthDay = #11/01/1977#

Dim MyName As String

MyName = "James"

CPSC mail

TAM

mail

3/5/2018

Administrative and course introduction 31

Common Mistake #1

• A variable is just that – it can change as a program runs.

• Approach #1: variable not used (lacks flexibility)
MsgBox ("My age is...")

MsgBox ("...37")

• Approach #2: variable employed (age can be changed with any
mathematical expression)

Dim age As Long

age = 37

MsgBox ("My age is...")

MsgBox (age)

age = 38

MsgBox ("My age is...")

MsgBox (age)

Variables: Metaphor To Use

• Think of VBA variables like a “mail slot in memory”

• Unlike an actual mail slot computer variables can only hold
one piece of information
– Adding new information results in the old information being replaced by

the new information

www.colourbox.com

Dim num as Long num

1

num
num = 1

17
num = 17

3/5/2018

Administrative and course introduction 32

Common Mistake #2

• Assigning values from one variable does not ‘link’ them

num1 = 1
num2 = num1
num1 = 2

Variables: Metaphor To Use (2)

• Also each computer variable is separate location in memory.

• Each location can hold information independently of other
locations.

• Note: This works differently than mathematical variables!

• What is the result?

Dim num1 as Long
Dim num2 as Long
num1 = 1
num2 = num1
num1 = 2

3/5/2018

Administrative and course introduction 33

MsgBox: Dislaying Mixes Of Strings And Variables

• Format:
MsgBox ("<Message1>" & <variable name>)

• Name of the online example: 2variablesMixedOutput.docm
Dim num as Long

num = 7

MsgBox ("num=" & num)

"num=" : A literal string
num: : contents of a variable (slot in memory)

Why Mix The Display Of Strings & Variables

• Labeling variables as they appear makes your program easier
to understand

4.3
3.3
3.7
2.0
4.0
4.0
3.9
1.0

Vs.

Student 1: 4.3
Student 2: 3.3
Student 3: 3.7
Student 4: 2.0
Student 5: 4.0
Student 6: 4.0
Student 7: 3.9
Student 8: 1.0

3/5/2018

Administrative and course introduction 34

Student Exercise: Mixed Output

• What is the output of the following MsgBox:

Sub exercise1()
Dim num As Long
num = 12
MsgBox ("num=" & num)

End Sub

Option Explicit

• It’s not mandatory to include for your program “to work”.

• But including it at the very start of your program before the
‘sub’ and subroutine name will save you many headaches!

• More details will be provided in tutorial.

3/5/2018

Administrative and course introduction 35

Third VBA Example

• Learning Objectives:
– Using variables

– Using mathematical operators

Third VBA Example (2)

Word document containing the macro: 3types.docm

Sub thirdExample()

Dim RealNumber As Double

Dim WholeNumber As Long

RealNumber = 1 / 3

MsgBox (RealNumber)

WholeNumber = 5 / 10

MsgBox (WholeNumber)

WholeNumber = 6 / 10

MsgBox (WholeNumber)

End Sub

JT’s note: Anything over 0.5 is rounded up

3/5/2018

Administrative and course introduction 36

Variable Naming Conventions

• Language requirements:
– Rules built into the Visual Basic (recall VBA is essentially Visual Basic

tied to an MS-Office Application) language.

– Somewhat analogous to the grammar of a ‘human’ language.

– If the rules are violated then the typical outcome is the program
cannot execute.

• Style requirements:
– Approaches for producing a well written program.

– (The real life analogy is that something written in a human language
may follow the grammar but still be poorly written).

– If style requirements are not followed then the program can execute
but there may be other problems (e.g., it is difficult to understand
because it’s overly long and complex - more on this during the term).

Naming Variables: VBA Language Requirements

• Names must begin with an alphabetic character
– OK: name1 Not OK: 1name

• Names cannot contain a space
– OK: firstName Not OK: first name

• Names cannot use special characters anywhere in the name
– Punctuation: ! ? .

– Mathematical operators: + - * / ^

– Comparison operators: < <= > >= <> =

3/5/2018

Administrative and course introduction 37

Naming Variables: Style Conventions

1. Style requirement (all
languages): The name should be
meaningful.

2. Style requirement (from the
Microsoft Developer Network1):

a) Choose easily readable
identifier names

b) Favor readability over

brevity.

Examples
#1:
age (yes)
x, y (no)

HorizontalAlignment (yes)
AlignmentHorizontal (no)

CanScrollHorizontally (yes)
ScrollableX (no)

1 http://msdn.microsoft.com/en-us/library/ms229045.aspx

Naming Variables: Style Conventions (2)

3. Style requirement: Variable
names should generally be all
lower case except perhaps for
the first letter (see next point for
the exception).

4. Style requirement: For names
composed of multiple words
separate each word by
capitalizing the first letter of
each word (save for the first
word) or by using an underscore.
(Either approach is acceptable
but don’t mix and match.)

5. Avoid using keywords as names
(next slide)

Examples
#3:
age, height, weight (yes)
HEIGHT (no)

#4
firstName, last_name
(yes to either approach)

3/5/2018

Administrative and course introduction 38

Some Common Visual Basic Keywords1

And Boolean Call Case Catch Continue

Date Decimal Default Dim Do Double

Each Else End Erase Error Event

Exit False Finally For Friend Function

Get Global Handles If In Inherits

Integer Interface Is Let Lib Like

Long Loop Me Mod Module Next

Not Nothing Of On Operator Option

Optional Or Out Overrides Partial Private

Property Protected Public Resume Return Select

Set Shadows Short Single Static Step

Stop String Sub Then Throw To

True Try Using Variant When While

Widening With

1 The full list can be found on the MSDN http://msdn.microsoft.com/en-us/library/dd409611.aspx

Variable Naming Conventions: Bottom Line

• Both the language and style requirements should be followed
when declaring your variables.

3/5/2018

Administrative and course introduction 39

Getting User Input

• A simple approach is to use an Input Box

• Format:
<Variable name> = InputBox(<"Prompt">, <"Title bar">)

• Example:
Name = InputBox("What is your name", "Getting Personal")

• Note: only the string for the prompt (first) is mandatory.

• If the title bar information is omitted then the default is the
application name (“Microsoft Word”)

Example: InputBox

• Learning: getting user input with an InputBox

• Word document containing the macro:
4inputBox.docm

Sub InputExample()

Dim age As Long

Dim name As String

Dim dogAge As Long

name = InputBox("What is your name", "Getting personal: name")

age = InputBox("What is your age", "Getting even more personal: age")

dogAge = age * 7

MsgBox (Name & " your age in dog years is " & dogAge)

End Sub

Note: there are two input boxes, one that prompts for the name and the other
for the age. Each is given a self-descriptive name to distinguish them (an
example of good programming style – more on this shortly)

3/5/2018

Administrative and course introduction 40

The VBA Debugger

• ‘Bug’:
–An error in the logic of your program.

–The program “doesn’t do what it is supposed to do”

–Example: an erroneous formula for calculating an area of a rectangle

area = length + width

–Bugs will seldom be this obvious

• Debuggers can be used to help find errors in your program

• More information on using the VBA debugger will be provided
in tutorial

Screenshot: www.computerhistory.org

Program Documentation

• Your VBA assignment submission must include identification
about you and information the features of your program
–Full name

–Student identification number

–Tutorial number

–List the program features (from the assignment description) and clearly
indicate if the feature was completed or not completed.

–Program version

• DON’T just enter this information into your program
instructions

Instructions for the
computer

(Computer): problem, I don’t know how
to run the “James Tam” instruction

3/5/2018

Administrative and course introduction 41

Program Documentation (2)

• You must ‘mark’ this information so it doesn’t cause an error
– The marking will indicate to the VBA translation mechanism that the line

is for the reader of the program and not to be translated and executed

– The marking is done with the single quote '

• Format:
' <Documentation>

• Example:
' Author: James Tam

• No error: Everything after the quote until the end of the line
will not be translated into machine language/binary

• That means documentation doesn’t have to be a valid and
executable instruction

Program Documentation (3)

• Contact information should be located before your program

• Before the ‘sub’ keyword
– Before ‘Option explicit’ if included

Documentation:
marked in red

3/5/2018

Administrative and course introduction 42

Program Documentation (4)

• Program features (this will be worth many marks)

• Example assignment description

• Program documentation
– ' Author: James Tam ID: 123456
– ' Version: Nov 2, 2015
– ' Tutorial: 99
– ' PROGRAM FEATURES
– ' #5: Printing: completed
– ' #6: Close and save: not completed
– etc

Program Documentation (5)

• Versioning
– It’s a commonly used industry practice:

– For assignments you can either use version numbers or dates
(recommended)

3/5/2018

Administrative and course introduction 43

Program Versioning And Back Ups

• As significant program features have been completed (tested
and the errors removed/debugged) a new version should be
saved in a separate file.

' Version: Oct 2, 2012
' Program features:
' (2) Count, display typos

' Version: Sept 20, 2012
' Program features:
' (5) Print
' (6) Save & close

A3.docm

' Version: Oct 2, 2012
' Program features:
' (2) Count, display typos

' Version: Sept 20, 2012
' Program features:
' (5) Print
' (6) Save & close

A3.Oct2

Make new backup
file

' Version: Sept 20, 2012
' Program features:
' (5) Print
' (6) Save & close

A3.Sept 30

Recap: Programs You’ve Seen So Far Produces
Sequential Execution

• Each instruction executes from beginning to end, one after the
other

• When the last instruction is reached then the program ends

Start

End

3/5/2018

Administrative and course introduction 44

• Making decisions (branching)

• Looping (repetition)

New Program Writing Concepts (Non-Sequential)

Grade
point >= 1.0

MsgBox(“Passed”)

True

MsgBox(“Failed”)

False

Play again?

Run game

Y

END GAME

N

START

New Terminology

• What you know; Boolean expression: An expression that must
work out (evaluate to) to either a true or false value.
– e.g., it is over 45 Celsius today

– e.g., the user correctly entered the password

• New term, body: A block of program instructions that will
execute under a specified condition (for branches the body
executes when a Boolean is true)

– Style requirement

• The ‘body’ is indented (4 spaces)

• A “sub-body” (IF-branch) is indented by an additional 4 spaces (8 or more
spaces)

Sub Document_Open()
MsgBox ("Fake virus!")

End Sub

This/these instruction/instructions run
when you tell VBA to run the macro, the
‘body’ of the macro program

3/5/2018

Administrative and course introduction 45

Branching: Making Decisions In A Program

• Similar to the Excel (IF-Function): Check if some condition has
been met (e.g., password for the document correctly entered):
Boolean expression

• But the IF-Construct employed with programming languages
is not just a function that returns a value for the true or false
cases.

• For each programming IF: a statement or a collection of
statements can be executed (this is referred to as “the body”
of the if or else case.

Branching: Making Decisions In A Program (2)

• Example: entering a password
– Boolean expression true, password matches:

• True case body: display confirmation message and run
program

– Boolean expression false, password doesn’t match:

• False case body: display error message

3/5/2018

Administrative and course introduction 46

Branching/Decision Making Mechanisms

• If-Then

• If-Then, Else Similar to Excel IF function

• If-Then, ElseIf, Else Similar to Excel nested IF function

Allowable Operators For Boolean Expressions
(Same Symbols As Excel)

if (value operator value) then

VBA Mathematical

operator equivalent Meaning Example

< < Less than 5 < 3

> > Greater than 5 > 3

= = Equal to 5 = 3

<= ≤ Less than or equal to 5 <= 5

>= ≥ Greater than or equal to 5 >= 4

<> ≠ Not equal to x <> 5

3/5/2018

Administrative and course introduction 47

Decision Making With ‘If-Then’

Boolean
Then execute an

instruction or instructions

True

False

Remainder of

the program

If-Then

• Format:
If (Boolean expression) Then

If-Body

End if

• Example:
If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " & totalWords)

End If

3/5/2018

Administrative and course introduction 48

If-Then: Complete Example

• Word document containing the macro: 5wordCount.docm
' Try deleting all the words in the Word doc and run the

' macro again

Sub wordCount()

Dim totalWords As Integer

Const MIN_SIZE = 4

totalWords = ActiveDocument.Words.Count

If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " &

totalWords)

End If

End Sub

Decision Making With An ‘If, Else’

• Used when different Actions (separate bodies) are required for
the true result (IF-case) vs. the false result (ELSE-case)

3/5/2018

Administrative and course introduction 49

Decision Making With An ‘If, Else’

Boolean Execute an instruction

or instructions (if-body)

True

False

Execute an instruction

or instructions (else-body)

Remainder of

the program

If-Then (True), Else (False)

• Format:
If (Boolean expression) Then

If-Body

Else

Else-Body

End if

• Example:
If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " & totalWords)

Else

MsgBox ("Document meets min. length requirements")

End If

3/5/2018

Administrative and course introduction 50

If-Then, Else: Complete Example

• Word document containing the macro: 6wordCountV2.docm
' Try deleting words or changing the minimum size and observe
' the effect on the program.

Sub wordCountV2()

Dim totalWords As Integer

Const MIN_SIZE = 1000

totalWords = ActiveDocument.Words.Count

If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " &

totalWords)

Else

MsgBox ("Document meets min. length requirements")

End If

End Sub

Logic Can Be Used In Conjunction With
Branching

• Typically the logical operators AND, OR are used with multiple
conditions/Boolean expressions:
– If multiple conditions must all be met before the body will execute. (And)

– If at least one condition must be met before the body will execute. (Or)

• The logical NOT operator can be used to check if something has
‘not’ occurred yet
– E.g., If it’s true that the user did not enter the correct password then the program will end.

3/5/2018

Administrative and course introduction 51

Logic: The “OR” Operator

• Format:
If (Boolean expression) OR (Boolean expression) then

body

End if

• Word document containing the macro (empty document, see
macro editor for the important details): 7if_or_hiring.docm
gpa = InputBox("Grade point: ")

experience = InputBox("Years of job experience: ")

If (gpa > 3.7) Or (experience > 5) Then

result = "Hire applicant"

Else

result = "Insufficient qualifications"

Hiring Example: Example Inputs & Results

GPA Years job experience Result

2 0 Insufficient qualifications

1 10 Hire

4 1 Hire

4 7 Hire

If (gpa > 3.7) Or (experience > 5) then

3/5/2018

Administrative and course introduction 52

Logic: The “AND” Operator

• Format:
If (Boolean expression) And (Boolean expression) then

body

End if

• Word document containing the macro (empty document, see
macro editor for the important details): 8if_and_firing.docm
salary = InputBox("Salary: ")

years = InputBox("Years of employment: ")

If (salary >= 100000) And (years < 2) Then

result = "Fired!"

Else

result = "Retained"

Firing Example: Example Inputs & Results

Salary Years on job Result

1 100 Retained

50000 1 Retained

123456 20 Retained

1000000 0 Fired!

If (salary >= 100000) And (years < 2) Then

3/5/2018

Administrative and course introduction 53

Logic: The “NOT” Operator

• Format:
If Not (Boolean Expression) then

body

End if

• Word document containing the macro example:
9checkSave.docm

If Not (ActiveDocument.Saved) Then

MsgBox ("You haven't saved " & ActiveDocument.Name

& " yet")

End If

Line Continuation Character

• To increase readability long statements can be split over
multiple lines.
If (income > 99999) And _

(experience <= 2) And _

(numRepramands > 0) Then

MsgBox ("You're fired!")

End If

• To split the line the line continuation character (underscore)
must be preceded by a space.

• Keywords cannot be split between lines e.g.
Msg _

Box

For more details see: http://support.microsoft.com/kb/141513

3/5/2018

Administrative and course introduction 54

Line Continuation Character (2)

• Strings split over multiple lines require a combination of the
proper use of the line continuation character '_' and the
concatenation operator '&‘:
MsgBox ("Your " _

& "name")

What To Do When Multiple Conditions Must Be
Checked

• Case 1: If each condition is independent of other questions
– Multiple if-then expressions can be used

– Example:

– Q1: Are you an adult?

– Q2: Are you a Canadian citizen?

– Q3: Are you currently employed?

3/5/2018

Administrative and course introduction 55

What To Do When Multiple Conditions Must Be
Checked (2)

• Case 2 (mutually exclusive): If the result of one condition
affects other conditions (when one condition is true then the
other conditions cannot be true)
– If-then, elseif, else should be used

– Which of the following is your place of birth? (Answering true to one
option makes the options false)

a) Calgary

b) Edmonton

c) Lethbridge

d) Red Deer

e) None of the above

Decision Making With Multiple If-Then’s

True

Instruction or

instructions

True

Instruction or

instructions

Q2:

Boolean 2

Remainder of

the program

False

False

Each question is independent (previous
answers have no effect on later questions
because all questions will be asked).

Q1: Are you an adult?
Q2: Are you a Canadian citizen?
Q3: Are you currently employed?

Q1:

Boolean 1

3/5/2018

Administrative and course introduction 56

Multiple If-Then's

• Any, all or none of the conditions may be true

• Employ when a series of independent questions will be asked

• Format:
if (Boolean expression 1) then

body 1

end if

if (Boolean expression 2) then

body 2

end if

...

statements after the conditions

Multiple If-Then's (2)

• Word document containing the macro:
10multipleIfs.docm
Sub multipleIf()

' Check if there were any 'comments' added to the document.

If (ActiveDocument.Comments.Count > 0) Then

MsgBox ("Annotations were made in this document")

End If

' A numbered item includes numbered and bulleted lists.

If (ActiveDocument.CountNumberedItems() > 0) Then

MsgBox ("Bullet points or numbered lists used")

End If

End Sub

3/5/2018

Administrative and course introduction 57

Multiple If's: Mutually Exclusive Conditions

• At most only one of many conditions can be true
• Can be implemented through multiple if's

• Word document containing the macro: “11gradesInefficient.docm”

Inefficient

combination!

If (letter = "A") Then

grade = 4

End If

If (letter = "B") Then

grade = 3

End If

If (letter = "C") Then

grade = 2

End If

If (letter = "D") Then

grade = 1

End If

If (letter = "F") Then

grade = 0

End If

Decision Making With If-Then, Elseif, Else

Boolean
True Instruction or

instructions

False

Boolean

Remainder of

the program

Instruction or

instructions

False

True Instruction or

instructions

JT’s note: once the first ‘true’ case is
encountered all remaining and
related Boolean expressions (using
‘Elseif’) are skipped

3/5/2018

Administrative and course introduction 58

Multiple If-Elif-Else: Use With Mutually
Exclusive Conditions

• Format:
if (Boolean expression 1) then:

body 1

elseif (Boolean expression 2) then

body 2

...

else

body n

' Only one ‘end-if’ at very end

end if

statements after the conditions

Mutually exclusive
• One condition evaluating to

true excludes other
conditions from being true

• Example: having your current
location as ‘Calgary’ excludes
the possibility of the current
location as ‘Edmonton’,
‘Toronto’, ‘Medicine Hat’

If-Elseif-Else: Mutually Exclusive Conditions
(Example)

• Word document containing the macro (empty document, see macro
editor for the important details): “12gradesEfficient.docm”
If (letter = "A") Then

grade = 4

ElseIf (letter = "B") Then

grade = 3

ElseIf (letter = "C") Then

grade = 2

ElseIf (letter = "D") Then

grade = 1

ElseIf (letter = "F") Then

grade = 0

Else

grade = -1 'A signal that letter was invalid

End If

This approach is more

efficient when at most

only one condition can

be true.

Extra benefit:

The body of the else executes

only when all the Boolean

expressions are false. (Useful

for error checking/handling).

3/5/2018

Administrative and course introduction 59

Location Of The “End If”: Multiple If’s

• Independent If-then’s:
– Since each ‘if’ is independent each body must be followed by it’s own

separate ‘end if’

Location Of The “End If”: If-then, Else

• If-then, Else:
– Since the ‘if-then’ and the ‘else’ are dependent (either one body or

the other must execute) the ‘end if’ must follow the body of the ‘else-
body’ (last dependent “if-branch”)

Document either does or
does not have enough words
(one option IF or the other
option ELSE must be
applied)

3/5/2018

Administrative and course introduction 60

Location Of The “End If”: If-Then, ElseIf

• Dependent If-then, Else-If:
– Since the results of earlier Boolean expressions determine whether later

ones can be true (reminder: because at most only one can be true) all of
the if-then and Elseif expressions are dependent (one related
block).

– The “end if” belongs at the very end of the block

VBA: If, Else-If And Excel: Nested-Ifs

• These two concepts are comparable:

VBA:
If (letter = "A") Then

grade = 4
ElseIf (letter = "B") Then

grade = 3
ElseIf (letter = "C") Then

grade = 2
ElseIf (letter = "D") Then

grade = 1
ElseIf (letter = "F") Then

grade = 0
Else

grade = -1
End If

Excel (display different messages for different
grade points e.g. Display “Perfect” if grade
point is 4.0 or greater):

=IF(D2="A",4,

IF(D2="B",3,

IF(D2="C",2,

IF(D2="D",1,

IF(D2="F",0,

-1)))))

3/5/2018

Administrative and course introduction 61

Looping/Repetition

• How to get the program or portions of the program to
automatically re-run
– Without duplicating the instructions

– Example: you need to calculate tax for multiple people

Ask for income

Calculate deductions

Display amounts

Loop: allows you
to repeat the
same tasks over
and over again

Looping/Repetition (2)

• The entire program repeats

Play again?

Run game

Y

END GAME

N

START

www.colourbox.com

Play game
again?

3/5/2018

Administrative and course introduction 62

Looping/Repetition (3)

• Only a specific part of the program repeats

Invalid input?

Ask for input again

Y

N

…rest of

program

Flowchart

Re-running specific parts of the program

Characteristics Of Do-While Loops

• Described as variable repetition loops: runs as long as some
condition holds true (number of times that the loop repeats is
variable)
– e.g., while the user doesn’t quit the program re-run the program

– e.g., while the user enters an erroneous value ask the user for input.

3/5/2018

Administrative and course introduction 63

Do-While Loop

• Format:
Do While <Condition>

<Statement(s)>

Loop

• Example: “13whileUpOne.docm”
Dim i As Integer

i = 1

Do While (i <= 4)

MsgBox ("i=" & i)

i = i + 1

Loop
Any valid
mathematical
expression
here

Start

Condition
?

Loop

Statements

T

End

F

Autom
atic

Programming Style: Variable Names

• In general variable names should be self-descriptive e.g., ‘age’,
‘height’ etc.

• Loop control variables are an exception e.g., ‘i’ is an acceptable
variable name
– It’s sometimes difficult to come up with a decent loop control name

– Loop control variables are given shorter names so the line length of a
loop isn’t excessive

Dim loopControl As Integer

loopControl = 1

Do While (loopControl <= 4)

...

3/5/2018

Administrative and course introduction 64

Loops That Never Execute

• Word document containing the complete program:
14nonExecutingLoops.docm

Dim i As Integer

i = 5
Do While (i <= 4)

MsgBox ("i=" & i)
i = i + 1

Loop

i = 1
j = -1
Do While (i < 0) and (j < 0)

MsgBox ("i=" & i & " " & "j=" & j)
i = i + 1

Loop

Student Exercise #2: Loops

• The following program that prompts for and displays the
user’s age.
Sub errorChecking()

Dim age As Long

age = InputBox("Age (greater than or equal to zero)")

End Sub

• Modifications:
– As long as the user enters a negative age the program will continue

prompting for age.

– After a valid age has been entered then stop the prompts and display the
age.

– Hint: first determine which parts of the program should be repeated and
which parts should not.

3/5/2018

Administrative and course introduction 65

Common Mistake #3

• Mixing up branches (IF and variations) vs. loops (do-while)

• Related (both employ a Boolean expression) but they are not
identical

• Branches
– General principle: If the Boolean evaluates to true then execute a

statement or statements (once)

– Example: display a popup message if the number of typographical errors
exceeds a cutoff.

• Loops
– General principle: As long as (or while) the Boolean evaluates to true

then execute a statement or statements (multiple times)

– Example: While there are documents in a folder that the program hasn’t
printed then continue to open another document and print it.

Common Mistake #3 (2)

• Contrast

• Word document containing the complete program:
15branchVsLoop.docm

age = InputBox("Age (positive only)")
If (age <= 0) then

age = InputBox("Age (positive only-IF)")
End if
MsgBox(age)

age = InputBox("Age (positive only)")
Do While (age <= 0)

Age = InputBox("Age (positive only-WHILE)")
Loop
MsgBox(age)

Vs.

3/5/2018

Administrative and course introduction 66

After This Section You Should Know

• The history and background behind VBA

• How to copy and run the pre-created lecture examples

• How to create and execute simple VBA macros
– You should know that macros can be automatically recorded but specifics

will be covered in tutorial

– Manually entering programs into the VB editor yourself

• How to create/use a Message Box “MsgBox”

• How the VB editor identifies programming errors

• How to use basic mathematical operators in VB expressions

• How to create and use variables

• Naming conventions for variables

• What are commonly used variable ‘types’ in VB

After This Section You Should Know (2)

• How to get user input with an Input Box “InputBox”

• How to create program documentation (as well contact
information that should be included in documentation)

• The security settings in the MS-Office “Trust Center”

• Different levels of security that exist for different types of MS-
Word documents

• How to use branches to make decisions in VBA

– If

– If-else

– Multiple If’s

– If, else-if, else

– Using logic (AND, OR, NOT) in branches

3/5/2018

Administrative and course introduction 67

After This Section You Should Now Know (3)

• How to use the line continuation character to break up long
instructions

• How to get a program to repeat one or more instructions using
Do-while loops

Copyright Notice

• Unless otherwise specfied, all images were produced by the
author (James Tam).

