
Databases, Part I: Storing Information

In this section you will learn about: how
information is stored in databases, different

database relations, ways of ensuring data validity

Online MS-Office information source:
https://support.office.com/

https://support.office.com/

Purpose Of A Database

• This section: To store information

Database:

Customer

information

Francesco Rollandin/OpenClipart

Purpose Of A Database

• Next section (database queries): To retrieve information
information

Database:

Customer

information

Sale $$$

Sale $$$

Databases: Storing / Retrieving Information

• As you will see, implementing these two tasks aren’t as easy as
it seems.

• Information must be stored such that:
– Information can be quickly retrieved

Databases: Storing / Retrieving Information (2)

– The database is designed to reduce problems during maintenance
(additions, modifications, deletions)
• Example: This comes up during database normalization (“if there is time”)

Marketing Dept.
• Loren Coleman
• William McCloud

Finance & Accounting
• Victor Davion

• Omiko Kurita

Information Technology

• Archie Bunker

One employee
has left and the
whole
department is
gone?

With Bother With Databases?

• Are used to store and retrieve information

• Why bother, why not use a simple file as an alternative?
– E.g., tracking client information

MILES EDWARD O’BRIAN
DS9 Corp
Electrical engineering
2007 purchases: $10,0000,000
2006 purchases: $1,750,000

JAMIE SMYTHE
Cooperative services
Gasoline refining
2006 purchases: $5,000,0000
2005 purchases: $5,000,0000
2004 purchases: $5,000,0000
2003 purchases: $5,000,0000
2002 purchases: $5,000,0000

SCOTT BRUCE
Bryce Consulting
Investment analysis
2007 purchases: $500,000
2006 purchases: $1,500,000
2005 purchases: $2,500,000
2004 purchases: $500,000

Etc.

• If the list is short then a simple text file may

suffice

• As the list grows organizing and updating

the information becomes more challenging

(duplicates or inaccuracies?)

• Also searching the list according to specific

criteria may become difficult

• e.g., Show all clients whose purchases in

2007 were between one and five million

dollars

• e.g., Show all clients that made a purchase

exceeding 10 million dollars.

Storing Information In A Database

• Information is stored in tables:

The ‘Gamers’ table

Storing Information In A Database (2)

• Row = Record: An example instance of data within the table.
– Gamers Table: one row is an example instance of a gamer

Table

records

One record, ‘Harri Masoon’

Storing Information In A Database (3)

• Column: are that attributes that we track for each record
– Gamers Table: each column specifies the information we store about the

gamers in this database.

Attributes (‘fields’ in Access) of each record

Primary Key

• Each table should typically have one attribute designated as
the primary key:
– The primary key must be guaranteed to be unique

– It must uniquely identify one record from another

Primary Key

for table

‘Employees’

is the ‘SIN’

attribute

Choosing A Primary Key

•A primary key must be unique to each record because it is the
one thing that distinguishes them.

•If there’s at least one instance where the attributes of two
records can take on the same value that attribute cannot be a
primary key. (When in doubt verify with your users).

•If a primary key cannot be formed from a single attribute then
several attributes can be combined into a composite key. (Each
attribute is still a column but together they form a unique
primary key for each record).
•E.g., CourseRegistrations table: Course name, course number, lecture
section (CPSC 203 L01)

•If a unique primary key still cannot be found then ‘invent’ one.
•E.g., StudentID#, SocialInsuranceNumber

MS-Access: Views Of Your Database
• Design view

– Typically start with this view

– Used to specify what attributes
that a table will consist of:
• e.g., GAMES: Title, HourlyRate

– Used to specify the type, format
and valid range of values
• e.g., SIN is attribute with 9

characters that must be in the format
000 000 000

• e.g., HourlyRate must be between $1
- $100

•Datasheet view

•Once the attributes have been
specified in the Design view using the
Datasheet view allows data entry for
each record.

Example Problem: Online Games

• This example can be found online:
– http://pages.cpsc.ucalgary.ca/~tamj/2018/203W/database/LectureExample.accdb

• An online gaming server will allow several online different
games to be played

• Gamers can logon to play a particular game

• A gamer playing a game will create a ‘session’ that tracks
(among other things) the cost of the gaming session

• (Even though some of the data stores information about
games, it’s really just a database example for a business where
a product is utilized ‘rental’ for a finite period of time).

http://pages.cpsc.ucalgary.ca/~tamj/2018/203W/database/LectureExample.accdb

Online Gamers: Information To Be Tracked

• Online identifier: “Call sign”

• Contact information: Email

• Contact information: Telephone number

• Income: A (yearly) numeric figure

• Real life identifier: First and last name

• Overall ‘score’ (sum of the player’s accomplishments among
multiple games): Level

Online Games: Information To Be Tracked

• Name of the game: Title

• The cost of playing a game: Hourly rate

Gaming Sessions: Information To Be Tracked

• Each time a player starts playing a game, billing information
must be generated (attaches the bill to the correct player)
– Who played the game (who gets the bill)

– Which game was played (how much is the cost per time unit)

– How long was the game played (in conjunction with the cost per time
unit it determines the amount for the bill)

Picking Tables

• A table stores related information about an entity
– E.g.,

– Book: Title, author/authors, publisher, edition

– Product: Product name, price, description

• The three groups of information (entities) in this problem
appear to map to three database tables
– Gamers

– Games

– Sessions

Guidelines For Naming Tables1

1. Create a unique and descriptive name.
– “CaloriesBurnedExercising” vs. “Workout”

2. Consider using the plural form of a name.
– “Games table” vs. “Game table”

3. Avoid the use of spaces in names.
– “Undergraduate students” vs. “Undergraduate_Students” vs.

“UndergraduateStudents”

1 Based on the principles from “Databases demystified a self teaching guide” (McGraw Hill) Oppel A. pp 211

Guidelines For Naming Attributes2

1. Create a name that accurately, clearly and unambiguously
identifies the characteristic that the attribute represents.
– “Name” vs. “FirstName”

2. Use the singular form of a name
–Tables store multiple records (e.g., GAMES table), attributes store a

single piece of information (e.g., Title for a particular game)

–Do not fall into the pitfall of creating composite attributes (phone
numbers - NO) vs. (home phone, cell phone etc. – YES)

3. Avoid the use of spaces in names (similar to tables).

1 Based on the principles from “Databases demystified a self teaching guide” (McGraw Hill) Oppel A. pp 211

Type Of Data For An Attribute1

• Most of the time you will select text
– Short text: max of 255 characters

– Long text: Up to 1 GB of characters (only the first 64,000
displayed)

– Text allows data to be entered in specific format (e.g. for
formatted postal codes, phone numbers).
• Not to be used to constrain numeric ranges (e.g. age must be greater

than 0).

• AutoNumber
– Automatically generates a sequence of numbers 1,2,3..

– Useful for generating unique primary keys if you cannot come
up with one

1 Source (last accessed 2017): https://support.office.com/ and the built in Office 2016 help system

https://support.office.com/

Type Of Data For An Attribute(2)

• Obvious types: number, date/time, currency
– The attribute must be set to date if you want set up error checking rules

(“validation rules” – covered later in this section) by date e.g. When
entering year of birth for “Generation Z” employees they must have a
birth year of 1996 or later.

• Lookup wizard: when one table’s attribute refers to an
attribute of another table (more on this later)

More Advanced Types (If There Is Time)

• OLE (Object linking and embedding):
– Allows ‘objects’ to be inserted e.g. MS-Office documents,

images (similar to an email attachment)

• Hyperlink
– Enter the web address, clicking on the attribute will

automatically pull up the webpage in the default browser.

• Calculated
– Similar to how one cell in Excel can be derived from the

values in other cells

– In Access ‘calculated’ allows for the attributes of a table to
be mathematically calculated from the attributes of the
same table (unless otherwise told explicitly don’t use this
for the assignment).

Null Values

•Refers to the attributes of a record that are empty

•Primary keys cannot be null but other attributes may be null

•Entry of any attribute can be made mandatory (if data must be
entered then it cannot be null)

Gamers Table: Attributes

• Gamer information to track:
– Online identifier: “Call sign”

– Contact information: Email

– Contact information: Telephone number

– Income: A (yearly) numeric figure

– Real life identifier: First and last name

– Overall score: Level

CallSign Email Telephone Income LastName FirstName Level

GAMERS

Games Table: Attributes

• Game information to track:
– Name of the game: Title

– The cost of playing a game: Hourly rate

Title HourlyRate

GAMES

Sessions Table: Attributes

• Each time a player plays a game billing information must be
generated.
– Who played the game

– Which game was played

– How long was the game played

• This one is trickier!
– Identifying ‘who’: need to be 100% certain that the correct gamer has

been identified (don’t bill the wrong person)

– Identifying ‘which’: again certainty is required because different games
have different hourly rates (don’t bill for the wrong game and/or
generate a bill for an incorrect amount)

– We need to “hold off” on creating a table until the above two
requirements can be met

Refinements Needed: Gamers

• Primary key?

CallSign Email Telephone Income LastName FirstName Level

GAMERS

Modified Table: Gamers

• Primary key: CallSign

CallSign Email Telephone Income LastName FirstName Level

GAMERS

Refinements Needed: Games

• Primary key?

Title HourlyRate

GAMES

Modified Table: Games

• Primary key: Title

Title HourlyRate

GAMES

The Games Table Again

• What if the game title was not guaranteed to be unique?

• Primary key?

The Sessions Table Revisited

• Recall: Each time a player logs in to play a game, billing
information must be generated.

• Some information need to generate a bill
– Who played the game

– Which game was played

• The ‘who’ needed to identify the gamer and the ‘which’
needed to specify the game

• Now that primary keys have been chosen for those two tables
we can specify those two attributes (the primary keys
unambiguously identify records from each table ‘who’, ‘which’)

CallSign Title

SESSIONS

Foreign Key

• An attribute in one table that refers to an attribute in another
table:
– E.g. CallSign in the Sessions table actually refers to an actual players

‘call sign’ in the Gamers table

– This is important because the CallSign is entered into the Gamers
table and not into the Sessions table.

CallSign Title

Cowboy TheTams

SESSIONS

CallSign Email Telephone Income LastName FirstName

Cowboy

GAMERS

Title HourlyRate

TheTams $20

GAMES

Retrieve
from

Retrieve
from

Purpose Of Foreign Keys

• Using foreign keys can prevent errors

• Example: when we create a login playing session, we can
ensure that we only bill a player that already exists in the
Gamers table.

• (The same principle applies to the ‘Title’ foreign key)

Creating a new session Gamers Table

Refinements Needed: Sessions

• It’s determined that each player can only login once per day
(our client informs us about this limitation on usage)

• Players can login and play over multiple dates

• For each session we could store the login date and the
duration (minutes):

CallSign Title SessionDate SessionDuration

Cowboy TheTams 9/13/2015 120

SESSIONS

Refinements Needed: Sessions

• Each row in the table is created when a gamer logins on a
particular date

• Primary key?

CallSign Title SessionDate SessionDuration

Cowboy TheTams 9/13/2015 120

SESSIONS

Composite Key

• Reminder: It’s a primary key that consists of multiple
attributes (multiple columns in a database table)

Attribute1 Attribute2 Attribute3 Attribute4

Modified Table: Sessions

• Primary key (composite): CallSign, Title, Date

• The creation of the primary key ‘makes sense’ intuitively for
this example based on the previous restrictions.

• What would be the primary key if a player could login multiple
times in a day?

CallSign Title SessionDate SessionDuration

Cowboy TheTams 9/13/2015 120

SESSIONS

Relationships Between Tables

• Relationships occur when an attribute of one table is a foreign
key in another table.

• Multiplicity: indicates how many instances of a particular item
participates in the relationship:

1. One to one

2. One to many

3. Many to many

Multiplicity

1. One to one relationships
– One entity participates in the relationship from the ‘left’ and one entity

participates in the relationship from the ‘right’.

– Person : Head

– Gamers : CallSign

– This type of relationship is rare in databases e.g. “DepartmentHead”
and “Department” vs. “SIN” and “Employee”

2. One to many relationships
– On one side of the relationship one entity participates in the

relationship while on the other side: zero or more entities may
participate in the relationship.

– This is the typical type of database relation

– Person : Hair

– Gamers : Sessions : Games

Multiplicity (2)

3. Many to many relationships

– On each side of the relationship zero or more entities may participate in the
relationship.

– E.g., Travelers : Destinations

– A theoretical database relationship, not directly implemented

Travelers table

TravelerID LastName FirstName

1 Tam James

2 Jones Mary

3 Smith Jon

Destinations table

DestinationID DestinationName

1 Dubai

2 Paris

3 Cairo

4 Vulcan

Multiplicity (3)

• Many to many relationships
– Typically implemented as two one to many relationships in databases:

Trips table

TravelerID DestinationID Date

1 1 Sept 1 2015

2 3 Sept 1 2015

2 4 Sept 8 2015

Travelers table

TravelerID LastName FirstName

1 Tam James

2 Jones Mary

3 Smith Jon

Destinations table

DestinationID DestinationName

1 Dubai

2 Paris

3 Cairo

4 Vulcan

Many To Many: Ignoring The Rule

Travelers table

TravelerID LastName FirstName

1 Tam James

2 Jones Mary

3 Smith Jon

Dest1 Dest2 Dest3 … Destn

Dubai

Dubai Cairo Vulcan Zimbobway

NY Vulcan

Many To Many: Ignoring The Rule (2)

Trav1 Trav2 Trav3 … Travn

Alice Bob Bill Zeek

Alice Bill Charlie

Alice Bill

Jim Karen

Destinations table

DestinationID DestinationName

1 Dubai

2 Paris

3 Cairo

4 Vulcan

(Gamers : Games) could be implemented as a many to many
relationship (by-passing the Sessions table) but problems similar to
the previous example would be encountered.

Primary-Foreign Keys Again

• When there is a one to many relationship the primary key of
the ‘one’ side becomes a foreign key on the ‘many’ side.

• Examples:

– Gamers : Sessions

– Games : Sessions

1 Many

CallSign:
Primary key

CallSign:
Foreign key

Title:
Primary key

Title:
Foreign key

1 Many

This should make intuitive sense: the primary key uniquely identifies

a record so it ‘should’ be on the ‘one’ rather than the many side

Diagrammatically Representing Database Tables

• Entity-Relation diagrams (E-R Diagrams or E.R.D.s): show the
attributes of a table

TABLE NAME

Primary key

Attribute

Attribute

Format

GAMES

Title

HourlyRate

Example

Diagrammatically Representing Relationships

• ERDs Graphically represent relationships between tables as
well as any enforced rules on multiplicity:

Person Head
1 1

Travelers Destinations
* *

Gamers Games
* *

Sessions
1 1

Person Hairs
1 * Person Hairs

1

Travelers Destinations

The ERD For The Example Database

GAMERS

CallSign

Email

Telephone

Income

LastName

FirstName

Level

SESSIONS

Title

CallSign

SessionDate

SessionDuration

GAMES

Title

HourlyRate

1

*

1

*

• Note: the line specifying relationships between tables goes from the primary key to the
foreign key (e.g. ‘CallSign’ in ‘Gamers’ to ‘CallSign’ in ‘Sessions’

Data Integrity

• High level description: prevent errors

• Some uses (there are others)
– Type checking: prevent the wrong type of information from being

entered e.g. alpha instead of numeric

– Range checking: prevent information outside the acceptable range from
being entered (e.g. negative age)

– Format checking: prevent information in the wrong form from being
entered (e.g. postal code N0N0N0 vs. N0N-0N0 vs. N0N 0N0)

Types Of Data Integrity In Databases

1. Table-level integrity (entity integrity):
– Ensuring that no duplicate records exist.

– Implementation: no primary keys are null: MS-Access (automatic)
indexed – no duplicates.

2. Relationship-level integrity (referential integrity):
– Ensuring that relationship between a pair of tables is sound and the

records in the tables are synchronized when data is entered into,
updated in or deleted from either table (MS-Access: only partially
implemented).

– Partial implementation in Access: use ‘lookup’ for the ‘data type’ of
an attribute & enforcing referential integrity.

3. Field/attribute -level integrity (domain integrity):
– Ensuring that the attributes are valid and accurate (the previous

slides 3 examples)

– MS-Access implementation: input masks and validation rules.

2. Relationship Level Integrity

• Create the foreign-primary key relationship (Design view)

Relationship Level Integrity: Creating The Relationship

• Create the foreign-primary key relationship (Design view)

Relationship Level Integrity: Creating The Relationship
(2)

Specify that the lookup value will

come from another table

Specify the table (for CPSC 203)

Relationship Level Integrity: Creating The Relationship
(3)

Specify the foreign-primary key

(attribute being looked up).

Later sub-steps

1. Click next.

2. No need to sort the results

3. Adjust column width if you wish

After Creating The Relationship

• You may edit the relationship

• Strengthen the relationship: “Enforce referential integrity”

JT’s Note

• Set up the relationship between tables as soon as possible.

• That’s because other parts of the database may not work
properly if set up the relationship afterwards.

• For this class make sure that you ‘Enforce referential integrity’

Input Masks

• Ensures the proper format for the data entered into the
database

• Example: SIN number must be entered as:
– <three digits> <space> <three digits> <space> <three digits>

• Invalid inputs:
•Abc def ghi
•321 22 4234

• Online example: Telephone number format
– (<area code>)<3 digits>-<4 digits>

– Example:
• (403)210-9455

Defining Input Masks

• Switch to ‘design view’

• (The data type needs to be ‘short text’ which is the default)

• Specify the required format under the ‘Input mask’ property of the
appropriate table attribute

Use Of Input Masks

• How it works: Constrains input allowed
– Can only enter a single digit

– Can only enter a single character

– Can only enter 5 digits (zip code)

– Etc.

• Benefits:
– “Ignores” invalid inputs in real-time

– Specifies the format of data to be entered (data entry cues)

• Source (last accessed Sept 2015):
– https://support.office.com/

Desired input Character to enter as the input

mask

A digit (0…9) can be entered 9

A digit (0…9) must be entered 0

Digits, space (default – data entry

skipped), plus or minus sign

#

Alphabetic letter must be entered L

Alphabetic letter can be entered ?

Alphabetic letter or digit must be entered A

Alphabetic letter or digit can be entered a

Converts characters that follow to upper

case

>

Converts characters that follow to lower

case

<

Input Mask Codes

https://support.office.com/

Input Masks: Online Database Example

• Gamers table, level: always displays with ‘L’ at the beginning
and then followed by one or two digits

Characters That Are Displayed But Not Part Of The
Table Attributes

• Entering a slash ‘\’ into the input mask (design view) will
display a character in the datasheet (data entry) view

– This can be a helpful data entry/formatting cue
• e.g. phone (area code)digits-digits

Characters That Are Displayed But Not Part Of The
Table Attributes (2)

• Note: the characters followed by a slash are NOT saved into
the field of the database table

• Example

Vs.

• Note: the data for the ‘A’ is saved for
‘Age1’ but not for ‘Age2’

• This can make a significant difference
when later searching the database
‘queries’
• ‘A12’ can show up as a result for

‘Age1’
• ‘A23’ will not show up as a result

for ‘Age2’

Multiple Slashes = Quotes

• If multiple “slash characters” (along with other characters) are
used in immediate succession then Access will replace them
with double quotes
– This can be a handy shortcut

Input Masks: Include The Slashes Or Not

• AGAIN: the character after the slash (or within the double quotes)
will be displayed when the record is entered in the datasheet view.

• Benefits
– A handy reminder of the format and type of data being entered

– Reduces the need for repetitive data entry (i.e. if always the same for each record
why require that it’s entered each time) and reduces data entry errors (typos)

• Drawback:
– AGAIN: the character after the slash (within the quotes) are not part of the

attribute and cannot be entered or searched

– E.g. all phone numbers in the above example must display with a 403 area code
but you cannot search for 403 area codes.

Input Masks: Online Database Example

• Gamers table, telephone number: bracketed 3 digit area code,
3 digits, dash, 4 digits

Validation Rules

• Validation rules check the data is in the valid range.
• E.g., from online database example: Gamers table, income must be a

non-negative value

• Can also be used to specify a data format (format of a
“character string”

• E.g., from online database example: Gamers table, a valid email must
have an “at-sign” ‘@’ and end in one of the following suffixes ‘.ca’, ‘.com’,
“.org”

• Unlike input masks validation rules allows useful error messages to be
displayed

Validation Rules: Specifying Error Messages

• “Validation text” & “default values”

Example Database: Application Of The Validation
Rules

• Gamers table
– CallSign: first character must be alphabetic

– Email: must include an ‘at-sign’ = @ and then end in: ‘.ca’, ‘.com’ or
‘.org’

– Income: no negative values

• Games table
– HourlyRate: a dollar value from $1 to $100.

• Sessions table
– SessionDate: date must be from Sept 12 2015 onwards

– SessionDuration: specifies the number of seconds in the range of 0 –
86,400

Validation Rules: Online Database Example (Single
Range)

• Gamers table: Income (non-negative only)

Validation Rules & Logic

• Logic can combine the conditions specified in validation rules

• AND (common)
– All conditions must be met before the data is deemed as valid

Format:

(Condition1) And (Condition 2)

Example:

>=0 And <=118

• OR (rare for numeric ranges more common for character
strings)
– At least one condition must be met before the data is deemed as valid

Format:

(Condition1) Or (Condition 2)

• NOT (rare in databases)
Format:

Not (Condition)

Validation Rules: Online Database Example (Two
Ranges)

• Games table: HourlyRate (a dollar value $1 - $100)

Student exercise: Sessions table,

SessionDuration: Specifies the number

of seconds from 0 – 86,400

Validation Rules: Online Database Example (Date
Ranges)

• Sessions: SessionDate: date must be from Sept 12 2015
onwards:
– The date must be enclosed in a “number sign” pair #<date>#

Validation Rules: Specifying The Format Character
Strings

• Character string: A sequence of characters (alpha, numeric and
other characters) e.g. NX-01

Desired input Value to enter into validation

string

Example use

Alphabetic only

(case

insensitive)

[A-Z] Like “[A-Z]” (single alpha)

Like “[A-Z][A-Z]” (two alpha)

Digit only [0-9]

#

Like "[0-9]" (single digit)

Like "[0-9][0-9]" (two digits)

Like “###” (three digits)

Wildcards *

?

Like “*” (anything)

Like “?” (any single character)

The Wildcard

• A value that can be used in place of other values.

• Example: “The joker is wild” option in card games

• Example: “*.docx” only documents ending in the suffix
“.docx” with any name will be considered.

• The start character ‘*’ is a wildcard because it can be
substituted by zero or more characters
– Example documents that will considered

•resume.docx
•A.docx
•.docx fulfills the wildcard requirement but is not a valid filename.

– Example documents that won’t be considered
•resume.doc
•Me.jpg

• The wildcard can be used in conjunction with validation rules

Validation Rules: Online Database Example (Simple
Character String)

• Gamers table: CallSign (first character must be alphabetic)
– O.K.

– Not O.K.

Validation Rules: Online Database Example (Complex
Character String)

• Gamers table: Email (must contain an ‘at-sign’ in the string
and the string ends with ‘.com’, ‘.ca’, ‘.org’
– O.K.

– Not O.K.

Input Masks Vs. Validation Rules: Error Handling

• Input masks
– Can specify desired input beforehand, real-time error prevention

• Validation Rules
– Default values can be specified

– Customized and detailed error messages can be created
• However, messages appear after erroneous data has been entered

Input Masks Vs. Validation Rules: Error Handling

• Range checking e.g. age >= 0
– Use a validation rule

• In general both can be used to check the format of the data
– E.g. <digit><digit><alpha>

• Entering an arbitrary number of characters
– Use a validation rule: Use of the multi-character wildcard (not possible

using an input mask)

Documenting A Database

• Documentation: Provides information about the database to
the other people who will be working on database.

• In MS-Access documentation can be entered in the
“Description” column (under the Design view)

• It can provide information about the type and format of the
information to be stored.
– Can be used if errors are found. (Providing the original ‘intention’ if there

is an error in the validation rules or the input mask can help others
correct the error).

Database Forms And Normalization (If There Is Time)

• A database form: design requirement of a database

• Forms discussed in this class:
– First normal form (1NF), Second normal form (2NF), Third normal form

(3NF)

– Earlier forms (e.g. 1NF) are less strict than later forms (2NF)

– Later forms (3NF) fulfill the requirements of earlier forms (2NF)

• Database normalization: redesigning a database in order to
bring it from a less strict form to one that is more strict.

Why Is Normalization Necessary?

•Normalization is regarded as good style

•My database ‘works’ that’s “good enough” why bother?

•It also helps to prevent errors or problems which are caused
by how the database is designed:

–e.g., insertion anomalies: difficulties when adding new information

–e.g., deletion anomalies: deleting information may result in the
inadvertent loss of information

Example Database Table: Projects1

• This table shows:
–ResearcherID: each professor working on a research project is given a

computer generated login name.

–Research project: name of the projects worked on in a particular
department.

• Professors can work on multiple projects

• Research projects can be initiated without a professor

–Location: room number of the research lab.

1 From “Database Development for Dummies” by Allen G. Taylor

ResearcherID

(PK)

Research projects

(PK)

Location

aturing Graph Coloring

Traveling Salesman

QC-103

QC-201

rdescartes Knapsack QC-121

cbabbage Traveling Salesman

Knapsack

QC-201

QC-121

bowen Knapsack QC-121

Problem: Some Cells Can Contain Multiple
Entries

•Queries can be awkward to form
• E.g., Using the ‘Like’ operator is difficult because it must deal with

special cases (or more entries in each cell).

• Example:

Research projects

Graph Coloring

Traveling Salesman

Knapsack

Traveling Salesman

Knapsack

Knapsack

With this format
searching for projects
under “Knapsack” won’t
work correctly (some
labs show up with
others will not).

Databases In First Normal Form

•1NF.: Each cell can contain at most one element (one value or
a null value, the latter for non-primary key fields).

•The previous table in first normal form:

ResearcherID (PK) Research project
(PK)

Location

aturing Graph Coloring QC-103

aturing Traveling Salesman QC-201

rdescartes Knapsack QC-121

cbabbage Traveling Salesman QC-201

cbabbage Knapsack QC-121

bowen Knapsack QC-121

First Normal Form: Critique

• Improvements:
–Cells contain only one value which reduces some of the problems

associated with forming queries.

• Further improvements needed:
–There is redundancy in the table e.g., “aturing”

– It may be subject to modification (addition and deletion) anomalies.

ResearcherID ResearchProject Location

aturing Graph Coloring QC-103

aturing Traveling Salesman QC-201

Deletion Anomaly

•Allan Turing (“aturing”) no longer works on the “Graph
Coloring” project.

Researcher
ID

Research
Project

Location

aturing Traveling
Salesman

QC-103

rdescartes Knapsack QC-121

cbabbage Traveling
Salesman

QC-201

cbabbage Knapsack QC-121

bowen Knapsack QC-121

After

Researcher
ID

Research
Project

Location

aturing Graph
Coloring

QC-103

aturing Traveling
Salesman

QC-201

rdescartes Knapsack QC-121

cbabbage Traveling
Salesman

QC-201

cbabbage Knapsack QC-121

bowen Knapsack QC-121

Before

Insertion Anomalies

•A new research project ‘UFO’ is added to the department and
room ‘Area-57’ is to be used as the research lab but a
researcher has not been hired.

•This is an incomplete record that cannot yet be properly added
to the database (PK = researcher and project name)

ResearcherID Research project Location

aturing Graph Coloring QC-103

aturing Traveling Salesman QC-201

rdescartes Knapsack QC-121

cbabbage Traveling Salesman QC-201

cbabbage Knapsack QC-121

bowen Knapsack QC-121

Problem With This Table

•The ‘Projects’ table combines two related but separate
concepts:

–Which research project a particular researcher working on
–What is the location of a particular project

•It’s a sign that a single unique key cannot be assigned

•By itself this isn’t necessarily a problem (i.e., ‘ResearcherID’ and
‘Research project’ form a composite primary key).

•But the non-primary key element “Location” depends only on a
part of the primary key (“Research project”) which can lead to
anomalies.

ResearcherID Research project Location

aturing Graphic Coloring QC-103

aturing Traveling Salesman QC-201

Databases In Second Normal Form

•Every non-primary key element must be dependent on the
primary key (and the entire primary key if the key is composite).

•The previous table split into two tables that are each in second
normal form.

ResearcherID Project

aturing Graph coloring

rdescartes Knapsack

cbabbage Traveling
Salesman

bowen Knapsack

Project Location

Graph coloring QC-103

Knapsack QC-121

Traveling
Salesman

QC-201

ResearchProject ResearchLocation

Critique Of Second Normal Form

•Dependencies can still exist that affects the database but in a
slightly more subtle fashion.

•All non-key fields are dependent upon the primary key but
some may be dependent in an indirect fashion.

Example1: “SalaryRange” Table

ResearcherID AcademicRank RangeCode

eschroedinger Full professor 4

pdirac Associate professor 3

wheisenberg Full professor 4

hbethe Assistant professor 2

jwheeler Adjunct professor 1

1 From “Database Development for Dummies” by Allen G. Taylor

Primary key

Non-key fields

whose values are

dependent on the

primary key

(second normal

form)

The Example In 2nd Normal Form Are Still
Subject To Some Anomalies

•Example Professor Dirac leaves the university.

ResearcherID AcademicRank RangeCode

eschroedinger Full professor 4

pdirac Associate professor 3

wheisenberg Full professor 4

hbethe Assistant professor 2

jwheeler Adjunct professor 1

ResearcherID AcademicRank RangeCode

eschroedinger Full professor 4

wheisenberg Full professor 4

hbethe Assistant professor 2

jwheeler Adjunct professor 1

Before

After

Problem With The Database (2nd Normal Form)

•While both non-key elements are dependent upon the
primary key, with “RangeCode” that dependency is indirect.

•“RangeCode” is dependent upon “AcademicRank” which is in
turn dependent upon “ResearcherID”.

•This is referred to as a transitive dependency:

ResearcherID AcademicRank RangeCode

eschroedinger Full professor 4

pdirac Associate professor 3

RangeCode AcademicRank ResearcherID

Third Normal Form

•A database in third normal form fulfills the requirements of
second normal form and has no transitive dependencies.

•Previous example in third normal form:

ResearcherID AcademicRank

eschroedinger Full professor

pdirac Associate
professor

wheisenberg Full professor

hbethe Assistant
professor

jwheeler Adjunct
professor

AcademicRank Range
Code

Full professor 4

Associate
professor

3

Assistant
professor

2

Adjunct
professor

1

RankRangeResearcherRank

After This Section You Should Now Know

•How a database is broken down into tables and how tables are
broken down into it's component parts

•What are the type of tables and the purpose of each

•What is the purpose of a primary key

•What is a foreign key

•When table are related what is the rule for determining which
table contains the primary vs. foreign key

•What is a null value

•What are forms of data integrity in databases

•Guidelines for naming tables and the attributes of the tables

•What are the three relationships that may exist between tables
and how they differ

After This Section You Should Now Know (2)

•How is a many-to-many relationship typically implemented in a
database

•The ERD representation of databases

•(If there is time): What are the characteristics of a database in:
first normal form, second normal form, third normal form (if
there is time)

