
6/19/2017

Recursion in Python 1

Recursion

You will learn the definition of
recursion as well as seeing how simple
recursive programs work

What Is Recursion?

“the determination of a succession of elements by

operation on one or more preceding elements according to
a rule or formula involving a finite number of steps”
(Merriam-Webster online)

6/19/2017

Recursion in Python 2

What This Really Means

Breaking a problem down into a series of steps. The final

step is reached when some basic condition is satisfied.

The solution for each step is used to solve the

previous step. The solution for all the steps together form

the solution to the whole problem.

(The “Tam” translation)

Definition Of Philosophy

“…state of mind of the wise man; practical wisdom…” 1

See Metaphysics

1 The New Webster Encyclopedic Dictionary of the English Language

6/19/2017

Recursion in Python 3

Metaphysics

“…know the ultimate grounds of being or what it is that

really exists, embracing both psychology and ontology.” 2

2 The New Webster Encyclopedic Dictionary of the English Language

Result Of Lookup , Possibility One: Success

• I know what Ontology means!

6/19/2017

Recursion in Python 4

Result Of Lookup, Possibility One

Philosophy?

Metaphysics?

Ontology!

Success! I’ll take
a Philosophy
option.

Result Of Lookup, Possibility Two: Failure

• Lookup ‘loops’ back.

6/19/2017

Recursion in Python 5

Result Of Lookup, Possibility Two

Philosophy?

Metaphysics?

Ontology?

Rats!!!
See

previous

Ontology

“…equivalent to metaphysics.”3

3 The New Webster Encyclopedic Dictionary of the English Language

Wav file from “The Simpsons”

6/19/2017

Recursion in Python 6

Result Of Lookup, Possibility Three: Failure

• You’ve looked up everything and still don’t know the
definition!

Looking Up A Word

if (you completely understand a definition) then

return to previous definition (using the definition that’s
understood)

else

lookup (unknown word(s))

6/19/2017

Recursion in Python 7

Recursion In Programming

“A programming technique whereby a function calls itself

either directly or indirectly.”

Direct Call

function

def fun ():

…

fun ()

…

6/19/2017

Recursion in Python 8

Indirect Call

f1

f2

Indirect Call

f1

f2

f3

…

fn

6/19/2017

Recursion in Python 9

Indirect Call (2)

Name of the example program: recursive.1py

def fun1():

fun2()

def fun2():

fun1()

fun1()

Requirements For Sensible Recursion

1) Base case

2) Progress is made (towards the base case)

6/19/2017

Recursion in Python 10

sum (2)

if (2 == 1)

return 1

sum (3)

if (3 == 1)

return 1

Example Program: sumSeries.py
def sum(no):

if (no == 1):
return 1

else:
return (no + sum(no-1))

def start():
last = input ("Enter the last

number: ")
last = (int)last
total = sum(last)
print ("The sum of the series

from 1 to", last, "is",
total)

start()

sumSeries

total = sum(3)

F

else

return (3 + sum (3 – 1))

F

else

return (2 +sum (2 – 1));

sum (1)

if (1 == 1)

return 1

T

1

3

6

When To Use Recursion

• When a problem can be divided into steps.

• The result of one step can be used in a previous step.

• There is a scenario when you can stop sub-dividing the
problem into steps (step = recursive call) and return to a
previous step.
– Algorithm goes back to previous step with a partial solution to the

problem (back tracking)

• All of the results together solve the problem.

6/19/2017

Recursion in Python 11

When To Consider Alternatives To Recursion

• When a loop will solve the problem just as well

• Types of recursion (for both types a return statement is
excepted)
– Tail recursion

• The last statement in the function is another recursive call to that function
This form of recursion can easily be replaced with a loop.

– Non-tail recursion

• The last statement in the recursive function is not a recursive call.

• This form of recursion is very difficult (read: impossible) to replace with a loop.

Example: Tail Recursion

• Tail recursion: A recursive call is the last statement in the
recursive function.

• Name of the example program: tail.py

def tail(no):

if (no <= 3):

print (no)

tail(no+1)

return()

tail(1)

6/19/2017

Recursion in Python 12

Example: Non-Tail Recursion

• Non-Tail recursion: A statement which is not a recursive call to
the function comprises the last statement in the recursive
function.

• Name of the example program: nonTail.py

def nonTail(no):s

if (no < 3):

nonTail(no+1)

print(no)

return()

nonTail(1)

James Tam

Error Handling Example Using Recursion

• Name of the example program: errorHandling.py

– Iterative/looping solution (month must be between 1 – 12)

month = -1

while ((month < 1) or (month > 12)):

month = int(input("Enter birth month (1-12): "))

6/19/2017

Recursion in Python 13

James Tam

Error Handling Example Using Recursion (2)

– Iterative/looping solution (day must be between 1 – 31)

def promptDay():

day = int(input("Enter day of birth (1-31): "))

if ((day < 1) or (day > 31)):

day = promptDay()

return(day)

...

day = promptDay()

Drawbacks Of Recursion

Function calls can be costly
– Uses up memory

– Uses up time

6/19/2017

Recursion in Python 14

Benefits Of Using Recursion

• Simpler solution that’s more elegant (for some problems)

• Easier to visualize solutions (for some people and certain
classes of problems – typically require either: non-tail
recursion to be implemented or some form of “backtracking”)

Common Pitfalls When Using Recursion

• These three pitfalls can result in a runtime error
– No base case

– No progress towards the base case

– Using up too many resources (e.g., variable declarations) for each
function call

6/19/2017

Recursion in Python 15

No Base Case

def sum(no):

return(no + sum (no - 1))

No Base Case

def sum (no):

return (no + sum (no - 1))
When does it stop???

6/19/2017

Recursion in Python 16

No Progress Towards The Base Case

def sum (no):

if (no == 1):

return 1

else:

return (no + sum (no))

No Progress Towards The Base Case

def sum (no):

if (no == 1):

return 1

else:

return (no + sum (no))

The recursive case

doesn’t make any

progress towards the

base (stopping) case

6/19/2017

Recursion in Python 17

Using Up Too Many Resources

• Name of the example program: recursiveBloat.py

def fun(no):

print(no)

aList = []

for i in range (0, 10000000, 1):

aList.append("*")

no = no + 1

fun(no)

fun(1)

Undergraduate Student Definition Of Recursion

Word: re·cur·sion

Pronunciation: ri-'k&r-zh&n

Definition: See recursion

Wav file courteously of “James Tam”

6/19/2017

Recursion in Python 18

Recursion: Job Interview Question

• http://www.businessinsider.com/apple-interview-questions-2011-5#write-a-function-that-calculates-a-numbers-factorial-
using-recursion-9

You Should Now Know

• What is a recursive computer program

• How to write and trace simple recursive programs

• What are the requirements for recursion/What are the
common pitfalls of recursion

