
5/23/2017

Decomposition/functions 1

CPSC 231:
Functions: Decomposition And

Code Reuse
You will learn how to write functions

that can be used to: decompose

large problems, and to reduce

program size by creating reusable

sections.

James Tam

Example Programs

• Location (via the WWW):
– http://pages.cpsc.ucalgary.ca/~tamj/2017/231P/examples/decomposition

• Location (via the CPSC UNIX network):
– /home/231/examples/decomposition

5/23/2017

Decomposition/functions 2

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of these programs will not be sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to follow the examples if you don’t do a little
preparatory work.

• Also it would be helpful to take notes that include greater
detail:
– For example: Literally just sketching out the diagrams that I draw

without the extra accompanying verbal description that I provide in
class probably won’t be useful to study from later.

James Tam

Solving Larger Problems

• Sometimes you will have to write a program for a large and/or
complex problem.

• One technique employed in this type of situation is the top
down approach to design.
– The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

5/23/2017

Decomposition/functions 3

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:

The humble beginnings
Chapter 2:

My rise to greatness

…

Chapter 7:

The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago

with a log-shaped computer work station…

Image copyright unknown

James Tam

Procedural Programming

• Applying the top down approach to programming.

• Rather than writing a program in one large collection of
instructions the program is broken down into parts.

• Each of these parts are implemented in the form of procedures
(also called “functions”, “procedures” or “methods” depending
upon the programming language).

5/23/2017

Decomposition/functions 4

Procedural Programming

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

When do you stop decomposing and start writing functions? No clear cut off but use the “Good
style” principles (later in these notes) as a guide e.g., a function should have one well defined
task and not exceed a screen in length.

Decomposing A Problem Into Functions

• Break down the program by what it does (described with
actions/verbs or action phrases).

• Eventually the different parts of the program will be
implemented as functions.

5/23/2017

Decomposition/functions 5

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

• Action/verb list:
– Prompt

– Calculate

– Display

5/23/2017

Decomposition/functions 6

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

Things Needed In Order To Use Functions

•Function definition
– Instructions that indicate what the function will do when it runs.

•Function call
– Actually running (executing) the function.

– You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

5/23/2017

Decomposition/functions 7

Functions (Basic Case: No parameters/Inputs)

Function call

Function definition

Defining A Function

• Format:
def <function name>():

body1

• Example:
def displayInstructions():

print ("Displaying instructions on how to use the

program")

1 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

5/23/2017

Decomposition/functions 8

Calling A Function

• Format:
<function name>()

• Example:
displayInstructions()

James Tam

Quick Recap: Starting Execution Point

• The program starts at the first executable instruction that is
not indented.

• In the case of your programs thus far all statement have been
un-indented (save loops/branches) so it’s just the first
statement that is the starting execution point.

• But note that the body of functions MUST be indented in
Python.

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

5/23/2017

Decomposition/functions 9

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

• Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point, not indented)

displayInstructions()

print("End of program")

James Tam

• Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

Function

definition

Function call

5/23/2017

Decomposition/functions 10

James Tam

Defining The Main Body Of Code As A Function

• Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.

• (The previous program rewritten to include an explicit start function)
“2firstExampleFunctionV2.py”

def displayInstructions():

print ("Displaying instructions")

def start():

displayInstructions()

print("End of program")

• Important: If you explicitly define the starting function then do not forgot
to explicitly call it!

start ()

Don’t forget to start your

program! Program starts

at the first executable

un-indented instruction

James Tam

Stylistic Note

• By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

• OR
def start():

• This is done so the reader can quickly find the beginning
execution point.

5/23/2017

Decomposition/functions 11

James Tam

New Terminology

• Local variables: are created within the body of a function
(indented)

• Global constants: created outside the body of a function.

• (The significance of global vs. local is coming up shortly).

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

Global
constant

Local
variables

James Tam

Creating Your Variables

• Before: all statements (including the creation of a variables)
occur outside of a function

• Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

• Constants can still be created outside of a function (more on
this later).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

‘Outside’: OK for
constants only

Inside function
body: all variables
must be here

5/23/2017

Decomposition/functions 12

•Variables are memory locations that are used for the temporary
storage of information.

num = 888

•Each variable uses up a portion of memory, if the program is
large then many variables may have to be declared (a lot of
memory may have to be allocated to store the contents of
variables).

What You Know: Declaring Variables

888num

RAM

What You Will Learn: What Is The Significance Of
Being ‘Local’

•To minimize the amount of memory that is used to store the
contents of variables only create variables when they are
needed (“allocated”).

•When the memory for a variable is no longer needed it can be
‘freed up’ and reused (“de-allocated”).

•To design a program so that memory for variables is only
allocated (reserved in memory) as needed and de-allocated
when they are not (the memory is free up) variables should be
declared as local to a function.

•(There’s an even better reason for making variables local
coming up later ‘side effects’)

5/23/2017

Decomposition/functions 13

James Tam

What You Will Learn: How To Work With Locals

Function call (local variables

get allocated in memory)

The program code in the function executes
(the variables are used to store
information needed for the function)

Function ends (local variables

get de-allocated in memory)

Reminder: Where To Create Local Variables

def <function name>():

Example:

def fun():

num1 = 1

num2 = 2

Somewhere within
the body of the
function
(indented part)

5/23/2017

Decomposition/functions 14

James Tam

Working With Local Variables: Putting It All Together

• Name of the example program: 3secondExampleFunction.py

def fun():

num1 = 1

num2 = 2

print(num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’

James Tam

Another Reason For Creating Local Variables

• To minimize side effects (unexpected changes that have
occurred to variables after a function has ended e.g., a variable
storing the age of the user accidentally takes on a negative
value).

• To visualize the potential problem: imagine if all variables could
be accessed anywhere in the program (not local).

MemoryFun1 ()

Fun2 ()

Fun3 ()

variable??? ???

???

5/23/2017

Decomposition/functions 15

James Tam

• Recall: local variables only exist for the duration of a function.

• After a function ends the local variables are no longer
accessible.

• Benefit: reduces accidental changes to local variables.

Local Variables

def fun():
x = 7
y = 13

def start():
a = 1
fun()
x,y
inaccessible

RAM

7x

13y

Memory: ‘fun’

1a

Memory: ‘start’

James Tam

• Recall: local variables only exist for the duration of a function.

• After a function ends the local variables are no longer
accessible.

• Benefit: reduces accidental changes to local variables.

Local Variables

def fun():
x = 7
y = 13

RAM

def start():
a = 1
fun()
x,y
inaccessible

7x

13y

Memory: ‘fun’

1a

Memory: ‘start’

Not possible (good!)

5/23/2017

Decomposition/functions 16

James Tam

New Problem: Local Variables Only Exist Inside A
Function

def display ():

print ("")

print ("Celsius value: ", celsius)

print ("Fahrenheit value :", fahrenheit)

def convert ():

celsius = float(input ("Type in the celsius temperature: "))

fahrenheit = celsius * 9 / 5 + 32

display ()

What is ‘celsius’???

What is ‘fahrenheit’???

New problem: How to access local

variables outside of a function?

Variables celsius
and fahrenheit
are local to

function
‘convert()’

James Tam

One Solution: Parameter Passing

• Passes a copy of the contents of a variable as the function is
called:

convert

celsius

fahrenheit

Parameter passing:

communicating information

about local variables (via

parameterss/inputs) into a

functiondisplay

Celsius? I know that value!

Fahrenheit? I know that value!

5/23/2017

Decomposition/functions 17

Parameter Passing: Past Usage

• You did it this way so the
function ‘knew’ what to
display:
age = 27

Pass copy of 27 to

print() function

print(age)

• You wouldn’t do it this
way:
age = 27

Nothing passed to print

Function print() has

no access to contents

of ‘age’

print()

Q: Why doesn’t it

print my age?!

A: Because you didn’t

tell it to!

James Tam

Parameter Passing (Function Definition)

• Format:
def <function name>(<parameter 1>, <parameter 2>...

<parameter n-1>, <parameter n>):

• Example:
def display(celsius, fahrenheit):

5/23/2017

Decomposition/functions 18

James Tam

Parameter Passing (Function Call)

• Format:
<function name>(<parameter 1>, <parameter 2>...

<parameter n-1>, <parameter n>)

• Example:
display(celsius, fahrenheit)

James Tam

Memory And Parameter Passing

• Parameters passed as parameters/inputs into functions
become variables in the local memory of that function.

def fun(num1):
print(num1)

num2 = 20

print(num2)

def start():

num1 = 1

fun(num1)

start()

num1: local to start

Parameter num1: local to fun

num2: local to fun

5/23/2017

Decomposition/functions 19

James Tam

Important Terminology

• Getting user input:
– The user “types in” the information

– In Python the input() function is employed

• Passing inputs/parameters into a function
– Information passed into a function as the function runs

Format:

<Function name>()

Examples:

print("hello") # input = "hello"

random.randrange(6) # input = 6

print() # No input

round(3.14,1) # 2 inputs = 3.14(data), 1(# fraction digits)

Inputs/parameters

James Tam

Sample (Simple) Example Question: Terminology

• Write a function that takes two inputs: a numerator and
denominator

• The function will calculate and display onscreen the floating
point quotient

• Solution:
– There is no mention of user input

– Consequently the input in the program description refers to information
passed into the function as it runs

Correct function definition

def aFunction(numerator,denominator):

quotient = numerator/denominator

print(quotient)

5/23/2017

Decomposition/functions 20

James Tam

• Useful for visualizing the layout of function calls in a large and
complex program.

• Format:

• Example:
def start():

age = float(input())

print(age)

Structure Charts

Function
being
called

Calling
function

Function
being
called

input

start

float print

age

James Tam

Structure Chart: temperature.py

• To reduce clutter most structure charts only show functions
that were directly implemented by the programmer.

introduction

start

convert

display

celsius
fahrenheit

Args(celsius,fahrenheit)

5/23/2017

Decomposition/functions 21

James Tam

Parameter Passing: Putting It All Together

• Name of the example program: 4temperature.py

def introduction ():

print ("""

Celsius to Fahrenheit converter

This program will convert a given Celsius temperature to an
equivalent

Fahrenheit value.

""")

James Tam

Parameter Passing: Putting It All Together (2)

def display (celsius, fahrenheit):

print ("")

print ("Celsius value: ", celsius)

print ("Fahrenheit value:", fahrenheit)

def convert ():

celsius = float(input ("Type in the celsius temperature: "))

fahrenheit = celsius * 9 / 5 + 32

display (celsius, fahrenheit)

start function

def start ():

introduction ()

convert ()

start ()

5/23/2017

Decomposition/functions 22

James Tam

• A parameter is copied into a local memory space.

Parameter Passing: Important Recap!

Inside function convert()
display(celsius, fahrenheit) # Function call

Inside function display
def display(celsius, fahrenheit): # Function

definition

Make copy Make copy

Data

Data

Data
copy

Separate

RAM

-34celsius

-29.2fahrenheit

Memory: ‘convert’

-34celsius

-29.2fahrenheit

Memory: ‘display’

Separate

James Tam

Parameter Passing: Another Example

• Name of the example program: 5functionCopy.py

• Illustrates how function parameters/inputs are local copies of
what’s passed in.

def fun(num1,num2):
num1 = 10
num2 = num2 * 2
print(num1,num2)

def start():
num1 = 1
num2 = 2
print(num1,num2)
fun(num1,num2)
print(num1,num2)

start()

5/23/2017

Decomposition/functions 23

James Tam

The Type And Number Of Parameters Must Match!

• Correct :
def fun1(num1, num2):

print(num1, num2)

def fun2(num1, str1):

print(num1, str1)

start

def start():

num1 = 1

num2 = 2

str1 = "hello"

fun1(num1, num2)

fun2(num1, str1)

start()

Two numeric

parameters are

passed into the call
for ‘fun1()’ which

matches the two

parameters listed

in the definition for
function ‘fun1()’

Two parameters (a
number and a string)
are passed into the
call for ‘fun2()’
which matches the
type for the two
parameters listed in
the definition for
function ‘fun2()’

James Tam

A Common Mistake: The Parameters
Don’t Match

• Incorrect :
def fun1(num1):

print(num1, num2)

def fun2(num1, num2):

num1 = num2 + 1

print(num1, num2)

start

def start():

num1 = 1

num2 = 2

str1 = "hello"

fun1(num1, num2)

fun2(num1, str1)

start()

Two numeric

parameters are

passed into the call
for ‘fun1()’ but only

one parameter is

listed in the

definition for
function ‘fun1()’

Two parameters (a

number and a string)

are passed into the
call for ‘fun2()’ but

in the definition of

the function it’s

expected that both

parameters are

numeric.

5/23/2017

Decomposition/functions 24

James Tam

Documenting Functions

• Python doesn’t require the type to be specified in the
parameter list.

• Therefore the number and type of parameters/inputs should
be specified in the documentation for the function.
display(float,float)
def display(celsius, fahrenheit):

James Tam

Yet Another Common Mistake: Not Declaring
Parameters

You wouldn’t do it this way with pre-created functions:
def start():

print(num)

So why do it this way with functions that you define yourself:
Etc. (Assume fun() has been defined elsewhere in the program)

start

def start():

fun(num)

start()

What is ‘num’? It

has not been

declared in function

‘start()’

What is ‘num’? It

has not been

created in function

‘start()’

start (corrected)
def start():

num = <Create first>
fun(num)

start()

5/23/2017

Decomposition/functions 25

Scope

• The scope of an identifier (variable, constant) is where it may
be accessed and used.

• In Python1:
– An identifier comes into scope (becomes visible to the program and can

be used) after it has been declared.

– An identifier goes out of scope (no longer visible so it can no longer be
used) at the end of the indented block where the identifier has been
declared.

1 The concept of scoping (limited visibility) applies to all programming languages. The rules for

determining when identifiers come into and go out of scope will vary with a particular language.

Scope: An Example

def fun1():

num = 10

statement

statement

End of fun1

def fun2():

print(num)

: :

‘num’ comes into

scope (is visible

and can be used)

(End of function): ‘num’
goes out of scope, no

longer accessible

Scope
of num

Num is no

longer in

scope

Error: ‘num’ is an

unknown identifier

5/23/2017

Decomposition/functions 26

Scope: A Variant Example

def fun1():

num = 10

statement

statement

End of fun1

def fun2():

fun1()

num = 20

: :

• What happens at this

point?

• Why?

New Problem: Results That Are Derived In One
Function Only Exist While The Function Runs

def calculateInterest(principle, rate, time):

interest = principle * rate * time

start

principle = 100

rate = 0.1

time = 5

calculateInterest (principle, rate, time)

print(“Interest earned $”, interest)

Stored locally

interest = 50

Problem:

Value stored in

interest cannot be

accessed here

5/23/2017

Decomposition/functions 27

Solution: Have The Function Return Values Back
To The Caller

def calculateInterest(principle, rate, time):

interest = principle * rate * time

return(interest)

start

principle = 100

rate = 0.1

time = 5

interest = calculateInterest(principle,

rate, time)

print (“Interest earned $”, interest)

Variable
‘interest’ is still

local to the

function.

The value stored in the
variable ‘interest’ local

to ‘calculateInterest()’

is passed back and

stored in a variable that

is local to the “start

function”.

James Tam

• Remember that local variables only exist for the duration of a
function.

Function Return Values (1)

def calculateArea():
w = int(input())
l = int(input())
a = w * l

def main():
calculateArea()
print(area)

RAM

Memory: ‘main’

w

l

Memory: ‘calculateArea’

a

5/23/2017

Decomposition/functions 28

James Tam

w

l

Memory: ‘calculateArea’

a

• After a function has ended local variables are ‘gone’.

Function Return Values (2)

def calculateArea():
w = int(input())
l = int(input())
a = w * l

RAM

Memory: ‘main’

area? (no longer
exists)

def main():
calculateArea()
print(area)

James Tam

w

l

Memory: ‘calculateArea’

a

Function Return Values (3)

• Function return values communicate a copy of information out
of a function (back to the caller) just as the function ends.

def calculateArea():
w = int(input())
l = int(input())
a = w * l

RAM

Memory: ‘main’

return(a)

area

The return statement
passes back a copy of

the value stored in ‘a’

Copy
of a’s
data

def main():
area = calculateArea()
print(area)

5/23/2017

Decomposition/functions 29

Using Return Values

• Format (Single value returned)1:
return(<value returned>) # Function definition

<variable name> = <function name>() # Function call

• Example (Single value returned) 1:

return(interest) # Function definition

interest = calculateInterest # Function call

(principle, rate, time)

1 Although bracketing the return value isn’t required when only a single value is returned it’s still recommended that you get in the
habit of doing it because it is required for ‘multiple’ return values. The actual details about the difference between returning a single
vs. ‘multiple’ values will be covered in the ‘composites’ section.

Using Return Values

• Format (Multiple values returned):
Function definition

return(<value1>, <value 2>...)

Function call

<variable 1>, <variable 2>... = <function name>()

• Example (Multiple values returned):

Function definition

return(principle, rate, time)

Function call

principle, rate, time = getInputs(principle, rate, time)

5/23/2017

Decomposition/functions 30

James Tam

Structure Chart: interest.py

introduction

start

getInputs calculate display

principle
rate
time
interest
amount

principle
rate
time

interest
amount

Return
(principle,rate,time)

Args
(principle,rate,time)

Return
(interest,amount)

Args
(principle,rate,time,
interest,amount)

Using Return Values: Putting It All Together

• Name of the example program: 6interest.py

def introduction():

print("""

Simple interest calculator

With given values for the principle, rate and time period this
program

will calculate the interest accrued as well as the new amount
(principle

plus interest).

""")

5/23/2017

Decomposition/functions 31

Using Return Values: Putting It All Together (2)

def getInputs():

principle = float(input("Enter the original principle: "))

rate = float(input("Enter the yearly interest rate %"))

rate = rate / 100

time = input("Enter the number of years that money will be invested:

")

time = float(time)

return(principle, rate, time)

def calculate(principle, rate, time):

interest = principle * rate * time

amount = principle + interest

return(interest, amount)

Using Return Values: Putting It All Together (3)

def display(principle, rate, time, interest, amount):

temp = rate * 100

print("")

print("Investing $%.2f" %principle, "at a rate of %.2f" %temp, "%")

print("Over a period of %.0f" %time, "years...")

print("Interest accrued $", interest)

print("Amount in your account $", amount)

5/23/2017

Decomposition/functions 32

Using Return Values: Putting It All Together (4)

start function

def start():

principle = 0

rate = 0

time = 0

interest = 0

amount = 0

introduction ()

principle, rate, time = getInputs()

interest, amount = calculate(principle, rate, time)

display(principle, rate, time, interest, amount)

start()

James Tam

Stylistic Note

• Creating variables all at once at the start of a function.
def start():

principle = 0

rate = 0

time = 0

interest = 0

amount = 0

introduction ()

principle, rate, time = getInputs()

interest, amount = calculate(principle, rate, time)

display(principle, rate, time, interest, amount)

start()

Not syntactically
required but a
stylistic approach

5/23/2017

Decomposition/functions 33

James Tam

Return And The End Of A Function

• A function will immediately end and return back to the caller if:

1. A return statement is encountered (return can be empty “None”)

def convert(catAge):

if (catAge < 0):

print(“Can’t convert negative age to human years”)

return() # Explicit return to caller (return

statement)

else:

: :

2. There are no more statements in the function.

def introduction():

print()

print("TAMCO INC. Investment simulation program")

print("All rights reserved")

print() # Implicit return to caller (last statement)

James Tam

Documenting Functions

• Similar to specifying the function parameters/inputs, the type
of the return values should also be documented.

• Example:
calculate

returns(float,float)

def calculate(principle, rate, time):

5/23/2017

Decomposition/functions 34

James Tam

Another Common Mistake:
Not Saving Return Values (Pre-Created Functions)

• You would typically never use the input() function this way

• (Function return value not stored)
input(“Enter your name”)

print(name)

• (Function return value should be stored)
name = input(“Enter your name”)

print(name)

Yet Another Common Mistake:
Not Saving Return Values (Your Functions)

• Just because a function returns a value does not automatically mean the
return value will be usable by the caller of that function.

def fun():

return(1)

• Function return values must be explicitly saved by the caller of the function.

def calculateArea(length,width):
area = length * width
return(area)

Start: error
area = 0
calculateArea(4,3)
print(area)

This value has to be stored or used

in some expression by the caller

Start: fixed
area = 0
area = calculateArea (4,3)
print(area)

5/23/2017

Decomposition/functions 35

James Tam

Parameter Passing Vs. Return Values

• Parameter passing is used to pass information INTO a function.
– Parameters are copied into variables that are local to the function.

def start():

num = int(input("Enter number: "))

absolute(num)

Memory: start

num -10

Memory: absolute

num -10

def absolute(num):
etc.

James Tam

Parameter Passing Vs. Return Values

• Return values are used to communicate information OUT OF a
function.
– The return value must be stored in the caller of the function.

Memory: start

num 3

Memory: square

result 9

def square(num):
result = num * num
return(result)

num 3

Parameter

result 9

Return
value

def start():
num = int(input("Enter number: "))
result = square(num)
print(result)

5/23/2017

Decomposition/functions 36

Global Scope

• Identifiers (constants or variables) that are declared within the
body of a function have a local scope (the function).
def fun ():

num = 12

End of function fun

• Identifiers (constants or variables) that are created outside the
body of a function have a global scope (the program).
num = 12

def fun1 ():

Instructions

def fun2 ():

Instructions

End of program

Scope of num is the function

Scope of num is the entire program

Global Scope: An Example

• Name of the example program: 7globalExample1.py

num1 = 10

def fun():

print(num1)

def start():

fun()

print(num2)

num2 = 20

start()

5/23/2017

Decomposition/functions 37

Global Variables: General Characteristics

• You can access the contents of global variables anywhere in
the program.

• In most programming languages you can also modify global
variables anywhere as well.
– This is why the usage of global variables is regarded as bad

programming style, they can be accidentally modified anywhere in the
program.

– Changes in one part of the program can introduce unexpected side
effects in another part of the program.

– So unless you have a compelling reason you should NOT be using global
variables but instead you should pass values as parameters.
• Unless you are told otherwise using global variables can affect the style component of

your assignment grade.

• Global constants are acceptable and are commonly used.

Global Variables: Python Specific Characteristic

• Name of the example program: 8globalExample2.py

num = 1

def fun():

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

Global

Local created and displayed

5/23/2017

Decomposition/functions 38

James Tam

Scoping Rules: Globals

• When an identifier is referenced (variable or constant) then:
1. First look in the local scope for the creation of the identifier: if found

here then stop looking and use this identifier

2. If nothing exists at the local level then look globally

def aFunction():

print(num)

Reference to
an identifier

2. Check globally

Num = <value> here?
1. Check locally

Num = <value> here?

Python Globals: ‘Read’ But Not ‘Write’ Access

• By default global variables can be accessed globally (read
access).

• Attempting to change the value of global variable will only
create a new local variable by the same name (no write access
to the global, only the local is changed).
num = 1

def fun():

num = 2

print(num)

• Prefacing the name of a variable with the keyword ‘global’ in
a function will indicate references in that function will refer to
the global variable rather than creating a local one.

global <variable name>

Global num

Local num

5/23/2017

Decomposition/functions 39

Globals: Another Example (‘Write’ Access Via
The “Global” Keyword)

• Name of the example program: 9globalExample3.py
num = 1

def fun():

global num

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

References to the name
‘num’ now affect the
global variable, local
variable not created

Global still changed after ‘fun()’ is done

Global changed

James Tam

What Level To Declare Variables

• Declare your variables as local to a function.

• When there are multiple levels of functions (a level is formed
when one function calls another) then:
– A variable should be created at the lowest level possible

fun1

fun2 Fun3(x,y)

Need
x,y here

x,y
Get and
return x,y

fun3

fun1

fun2

y,z
x

5/23/2017

Decomposition/functions 40

James Tam

Documenting Functions

• (As previously mentioned the documentation should include)
– The type and number of parameterss/inputs e.g., # fun(int,string)

– The type and number of return values e.g., # returns(float,float,int)

• Additional documentation
– Functions are a ‘mini’ program.

– Consequently the manner in which an entire program is documented
should also repeated in a similar process for each function:

• Features list.

• Limitations, assumptions e.g., if a function will divide two parameters then the
documentation should indicate that the function requires that the
denominator is not zero.

• (Authorship and version number may or may not be necessary for the
purposes of this class although they are often included in actual practice).

James Tam

Doc Strings (If There Is Time)

• A special form of documentation:
– Characteristic 1: It allows for documentation to span multiple lines

– Example:

""" (triple double quotes)

function: getInputs

@getInputs(none)

@returns(float,float,int)

@Prompt the user for the inputs to the operation:
principle, rate, time

"""

def getInputs():

...

return(principle, rate, time)

5/23/2017

Decomposition/functions 41

James Tam

Doc Strings (If There Is Time, 2)

– Characteristic 2: it can provide help as the program is running in
Python’s interactive mode.

– Example: program is stored in file called “doc_strings.py”

– Interactive mode is invoked by typing “python” at the command line
(no program name)

"""
function: getInputs
@getInputs(none)
@returns(float,float,int)
@Prompt the user for the inputs to
the operation: principle, rate, time
"""
def getInputs():

...
return(principle, rate, time)

doc_strings.py
Start interactive mode

Viewing help (doc string)

James Tam

Boolean Functions

• Return a Boolean value (true/false): “Asks a question”

• Typically the Boolean function will ‘ask the question’ about a
parameter(s)

• Example:
– Is it true that the string can be converted to a number?

aString = input("Enter age: ")

ageOK = isNum(aString)

if (ageOK != True):

print("Age must be a numeric value")

else:

OK to convert the string to a number

age = int(aString)

Boolean function
def isNum(aString):

Returns (True
or False)

5/23/2017

Decomposition/functions 42

James Tam

Good Style: Functions

1. Each function should have one well defined task. If it doesn’t
then this may be a sign that the function should be
decomposed into multiple sub-functions.
a) Clear function: A function that squares a number.

b) Ambiguous function: A function that calculates the square and the
cube of a number.

–Writing a function that is too specific makes it less useful (in this case what if
we wanted to perform one operation but not the other).

• Also functions that perform multiple tasks can be harder to test.

James Tam

Good Style: Functions (2)

2. (Related to the previous point). Functions should have a self
descriptive action-oriented name (verb/action phrase or take
the form of a question – the latter for functions that check if
something is true): the name of the function should provide
a clear indication to the reader what task is performed by the
function.

a) Good: drawShape(), toUpper()

isNum(), isUpper() # Boolean functions: ask questions

a) Bad: doIt(), go(), a()

5/23/2017

Decomposition/functions 43

James Tam

Good Style: Functions (2)

3. Try to avoid writing functions that are longer than one screen
in length.
a) Tracing functions that span multiple screens is more difficult.

4. The conventions for naming variables should also be applied
in the naming of functions.
a) Lower case characters only.

b) With functions that are named using multiple words capitalize the
first letter of each word except the first (so called “camel case”) -
most common approach or use the underscore (less common).
Example: toUpper()

Functions Should Be Defined Before They Can Be
Called!

• Correct 
def fun():

print("Works")

start

fun()

• Incorrect 
Start

fun()

def fun():

print("Doesn't work")

Function

definition

Function

call

Function

definition

Function

call

5/23/2017

Decomposition/functions 44

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

start function

print("In start")

fun

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

start function

print("In start")

fun()

The missing set of

brackets do not produce a

syntax/translation error

5/23/2017

Decomposition/functions 45

James Tam

Another Common Problem: Indentation

• Recall: In Python indentation indicates that statements are part
of the body of a function.

• (In other programming languages the indentation is not a
mandatory part of the language but indenting is considered
good style because it makes the program easier to read).

• Forgetting to indent:
def start ():

print ("start")

start ()

James Tam

Another Common Problem: Indentation (2)

• Inconsistent indentation:
def start():

print("first")

Error: Unless this is the body of branch or loop

print("second")

start()

5/23/2017

Decomposition/functions 46

James Tam

Yet Another Problem: Creating ‘Empty’ Functions

def start():

start()

Problem: This statement

appears to be a part of the

body of the function but it is

not indented???!!!

James Tam

Yet Another Problem: Creating ‘Empty’
Functions (2)

def fun():

print()

start

fun()

A function

must have

at least one

statement

Alternative
(writing an empty
function: literally
does nothing)

def fun():

pass

start

fun()

5/23/2017

Decomposition/functions 47

James Tam

Testing Functions

• The correctness of a function should be verified. (“Does it do
what it is supposed to do?”)

• Typically this is done by calling the function, passing in
predetermined parameters and checking the result.

• Example: absolute_test.py
def absolute(number):

if (number < 0):

result = number * -1

else:

result = number

return(result)

Test cases

print(absolute(-13))

print(absolute(7))

Expected results:
13
7

James Tam

Creating A Large Document

• Recall: When creating a large document you should plan out
the parts before doing any actual writing.

Chapter 1
• Introduction
• Section 1.1
• Section 1.2
• Section 1.3
• Conclusion

Chapter 2
• Introduction
• Section 2.1
• Section 2.2
• Section 2.3
• Section 2.4
• Conclusion

Chapter 3
• Introduction
• Section 3.1
• Section 3.2
• Conclusion

Step 1: Outline all the parts (no writing)

Section 1.1
It all started seven
and two score
years ago…

Step 2: After all parts outlined, now
commence writing one part at a time

5/23/2017

Decomposition/functions 48

James Tam

Creating A Large Program

• When writing a large program you should plan out the parts
before doing any actual writing.

Step 1: Calculate interest (write empty ‘skeleton’ functions)
def getInformation():

pass

def doCalculations():
pass

def displayResults():
pass

Step 2: All functions outlined, write function bodies one-at-
a-time (test before writing next function)

def getInformation():
principle = int(input())
interest = int(input())
time = int(input())
return(principle,interest,time) # Simple test: check inputs

properly read and
returned
p,r,t = getInformation()
print(p,r,t)

Why Employ Problem Decomposition And
Modular Design (1)

• Drawback
– Complexity – understanding and setting up inter-function

communication may appear daunting at first.

– Tracing the program may appear harder as execution appears to “jump”
around between functions.

– These are ‘one time’ costs: once you learn the basic principles of
functions with one language then most languages will be similar.

5/23/2017

Decomposition/functions 49

James Tam

Why Employ Problem Decomposition And Modular
Design (2)

• Benefit
– Solution is easier to visualize and create (decompose the problem so

only one part of a time must be dealt with).

– Easier to test the program:
• Test one feature/function at a time

• (Testing multiple features increases complexity)

– Easier to maintain (if functions are independent changes in one
function can have a minimal impact on other functions, if the code for a
function is used multiple times then updates only have to be made
once).

– Less redundancy, smaller program size (especially if the function is used
many times throughout the program).

– Smaller programs size: if the function is called many times rather than
repeating the same code, the function need only be defined once and
then can be called many times.

James Tam

After This Section You Should Now Know

• How and why the top down approach can be used to
decompose problems

– What is procedural programming

• How to write the definition for a function

• How to write a function call

• How and why to declare variables locally

• How to pass information to functions via parameters

• How and why to return values from a function

• What is a Boolean function

• What is the difference between a local and a global variable.

• How to document a function

5/23/2017

Decomposition/functions 50

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

