6.14 Identilying Class Operations 263

Fig. 6.17 | Creating JFrame to display a smiley face. (Part 2 of 2.)
GUI and Graphics Case Study Exercises

6.1 Using method fi110val, draw a bull’s-eye that alternates between two random colors, as in
Fig. 6.18. Use the constructor Color(int r, int g, int b) with random arguments to generate
random colors.

6.2 Create a program that draws 10 random filled shapes in random colors and positions (Fig. 6.19).
Method paintComponent should contain a loop that iterates 10 titnes. In each iteration, the loop should
determine whether to draw a filled rectangle or an oval, create a random color and choose coordinates and
dimensions at random. The coordinates should be chosen based on the panel’s width and height. Lengths
of sides should be limited to half the width or height of the window. What happens each time paintCom-
ponent is called (i.c., the window is resized, uncovered, etc.)? We will resolve this issue in Chapter 8.

6.14 (Optional) Software Engineering Case Study:
Identifying Class Operations

In the “Software Engineering Case Study” sections at the ends of Chapters 3, 4 and 5, we
performed the first few steps in the object-oriented design of our ATM system. In Chapter 3,
we identified the classes that we will need to implement and created our first class diagram.
In Chapter 4, we described some artributes of our classes. In Chapter 5, we examined ob-
jects’ states and modeled objects’ state cransitions and activities. In this section, we determine
some of the class operations (or behaviors) needed to implement the ATM system.

i

Fig. 6.18 | A bull's-eye with two altemating, random colors.

264 Chapter 6 Methods: A Deeper Look

Fig. 6.19 | Randomly generated shapes.
Identifying Operations

An operation is a service that objects of a class provide to clients (users) of the class. Con-
sider the operations of some real-world objects. A radio’s operations include setting its sta-
tion and volume (typically invoked by a person adjusting the radio’s controls). A car’s
operations include accelerating (invoked by the driver pressing the accelerator pedal), de-
celerating (invoked by the driver pressing the brake pedal or releasing the gas pedal), turn-
ing and shifting gears. Software objects can offer operations as well—for example, a
software graphics object might offer operations for drawing a circle, drawing a line, draw-
ing a square and the like, A spreadsheet software object might offer operations like printing
the spreadsheet, totaling the elements in a row or column and graphing information in the
spreadsheet as a bar chart or pie chart,

We can derive many of the operations of each class by examining the key verbs and
verb phrases in the requirements document. We then relate each of these to particular
classes in our system (Fig. 6.20). The verb phrases in Fig. 6.20 help us determine the oper-
ations of each class.

Modeling Operations

To identify operations, we examine the verb phrases listed for each class in Fig. 6.20. The
“executes financial transactions” phrase associated with class AT implies that class ATM in-
structs transactions to execute. Therefore, classes BalanceInquiry, Withdrawal and De-
posit each need an operation to provide this service to the ATM. We place this operation
(which we have named execute) in the third compartment of the three transaction classes
in the updated class diagram of Fig. 6.21. During an ATM session, the ATM object will in-
voke the execute operation of each transaction object 1o tell it to execute.

¢.14 Identifying Class Operations 265

ATM executes financial transactions

galancelnquiry [nonein the requirements document]

withdrawal [none in the requirements document]

Deposit [none in the requirements document)

BankDatabase authenticates a user, retrieves an account balance, credits a deposit
amount to an account, debits a withdrawal amount from an account

Account retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

Screen displays a message to the user

Keypad receives numeric input from the user

CashDispenser dispenses cash, indicates whether it contains enough cash to satisfy a

withdrawal request

DepositSiot receives a deposit envelope

Fig. 6.20 | Verbs and verb phrases for each class in the ATM system.

The UML represents operations (which are implemented as methods in Java) by
listing the operation name, followed by a comma-separated list of parameters in paren-
theses, a colon and the return type:

operationName(parameterl parameter2, ..., parameterN) @ return lype

Each parameter in the comma-separated parameter list consists of a parameter name, fol-
lowed by a colon and the parameter type:

parameterName : parameterType

For the moment, we do not list the parameters of our operations—we will identify
and model the parameters of some of the operations shortly. For some of the operations,
we do not yet know the return rypes, so we also omit them from the diagram. These omis-
sions are perfectly normal at this point. As our design and implementation proceed, we
will add the remaining return types.

Figure 6.20 lists the phrase “authenticates a user” next to class BankDatabase—the
database is the object that contains the account information necessary to determine
whether the account number and PIN entered by a user match those of an account held
at the bank. Therefore, class BankDatabase needs an operation that provides an authenti-
cation service to the ATM. We place the operation authenticateUser in the third com-
partment of class BankDatabase (Fig. 6.21). However, an object of class Account, not class
BankDatabase, stores the account number and PIN that must be accessed to authenticate
a user, so class Account must provide a service t0 validate a PIN obtained through user
input against a PIN stored in an Account object. Therefore, we add a validatePIN oper-
ation to class Account. Note that we specify a return type of Boolean for the
authenticateUser and validatePIN operations. Each operation returns a value indi-

e ot

T R

(VRN
V-

266 Chapter ¢ Methods: A Deeper Look

ATM R Account |
usetAuthenticated : Boolean = false accountNumber Integer
pin : Integer
et availableBalange ; Double
. * totalBalance : Double
Balancelnquiry ‘validatePIN() : Boolean
accountNumber : integer -~ getAvailableBalance() : Double
execute{) . © getTotalBalance() : Double ,
. N T s L L ﬂwlt() ' '

. debi .
accountNumber : integer - s Screen '
amount ; Double '
execute() B

"Keypad '
‘accountNumber ; Integer — e .
amount : Double

execute() _ o . Eetinput(): Integer

BankDatabase B ~ CashDispenser ;
“count : Integer = 500 Lo
authenticateUser() : Boolean dispenseCash() o
getAvailableBalance() : Double IsSuflicientCashPvailabley() : Boctean: '
_getTotalBalance() : Double . , o,
credit() C : ' DepositSlot .

O

sEvelopeReceived): Boolean |
Fig. 6.21 | Classes in the ATM system with attributes and operations.

cating either that the operation was successful in performing its task (i.e., a return value of
true) or that it was not (i.e., a return value of false).

Figure 6.20 lists several additional verb phrases for class BankDatabase: “retrieves an
account balance,” “credits a deposit amount to an account” and “debits a withdrawal
amount from an account.” Like “authenticates a user,” these remaining phrases refer to
services that the darabase must provide to the ATM, because the database holds all the
account data used to authenticate a user and perform ATM transactions. However, objects
of class Account actually perform the operations to which these phrases refer. Thus, we
assign an operation to both class BankDatabase and class Account to correspond to each
of these phrases. Recall from Section 3.10 that, because a bank account contains sensitive
information, we do not allow the ATM to access accounts directly. The database acts as
an intermediary berween the ATM and the account data, thus preventing unauthorized
access. As we will see in Section 7.14, class ATM invokes the operations of class BankData-
base, each of which in turn invokes the operation with the same name in class Account.

6.14 Identifying Class Operations 267

The phrase “retrieves an account balance” suggests that classes BankDatabase and
Account each need a getBalance operation. However, recall that we created two attributes
in class Account to represent a balance—availab] eBalance and totalBalance. A balance
inquiry requires access to both balance attributes so that it can display them to the user,
but a withdrawal needs to check only the value of availableBalance. To allow objects in
the system to obuin each balance attribute individually, we add operations
getAvailableBalance and getTotalBalance to the third compartment of classes Bank-
patabase and Account (Fig. 6.21). We specify a return type of Double for these operations
because the balance attributes which they retrieve are of type Double.

The phrases “credits a deposit amount to an account” and “debits a withdrawal
amount from an account” indicate that classes gankDatabase and Account must perform
operations to update an account during a deposit and withdrawal, respectively. We there-
fore assign credit and debit operations to classes BankDatabase and Account. You may
recall that crediting an account (as in a deposit) adds an amount only to the totalBalance
attribute. Debiting an account (as in a withdrawal), on the other hand, subtracts the
amount from both balance attributes. We hide these implementation details inside class
Account. This is a good example of encapsulation and information hiding.

If this were a real ATM system, classes BankDatabase and Account would also provide
a set of operations to allow another banking system to update a user’s account balance after
cither confirming or rejecting all or part of a deposit. Operation confi rmDepositAmount,
for example, would add an amount to the availableBalance attribute, thus making
deposited funds available for withdrawal. Operation rejectDepositAmount would sub-
cract an amount from the totalBalance attribute to indicate that a specified amount,
which had recently been deposited through the ATM and added to the totalBalance, was
not found in the deposit envelope. The bank would invoke this operation after deter-
mining either that the user failed to include the correct amount of cash or that any checks
did not clear (i.e, they “bounced”). While adding these operations would make our system
more complete, we do not include them in our class diagrams or our implementation
because they are beyond the scope of the case study.

Class Screen “displays a message to the user” at various times in an ATM session. All
visual output occurs through the screen of the ATM. The requirements document
describes many types of messages (e.g., a welcome message, an error message, a thank you
message) that the screen displays to the user. The requirements document also indicates
that the screen displays prompts and menus to the user. However, a prompt is really just
a message describing what the user should input next, and a menu is essentially a type of
prompt consisting of a series of messages (i.e., menu options) displayed consecutively.
Therefore, rather than assign class Screen an individual operation to display each type of
message, prompt and menu, we simply create one operation that can display any message
specified by a parameter. We place this operation (displ ayMessage) in the third compart-
ment of class Screen in our class diagram (Fig. 6.21). Note that we do not worry about
the parameter of this operation at this time—we model the parameter later in this section.

From the phrase “receives numeric input from the user” listed by class Keypad in
Fig. 6.20, we conclude that class Keypad should perform a getInput operation. Because
the ATM’s keypad, unlike a computer keyboard, contains only the numbers 0-9, we
specify that this operation returns an integer value. Recall from the requirements docu-
ment that in different situations the user may be required to enter a different type of

S

268 Chapter ¢ Methods: A Deeper Look

number (e.g., an account number, a PIN, the number of a meny option, a deposit amount
as a number of cents). Class Keypad simply obtains a numeric value for a client of the
class—it does not determine whether the value meets any specific criteria. Any class that
uses this operation must verify that the user entered an appropriate number in a given sit-
uation, then respond accordingly (i.c., display an error message via class Screen). [Note:
When we implement the system, we simulate the ATM's keypad with a computer key-
board, and for simplicity we assume that the user does not enter non-numeric input using
keys on the computer keyboard that do not appear on the ATM'’s keypad.]

Figure 6.20 lists “dispenses cash” for class CashDi spenser-. Therefore, we create oper-
ation dispenseCash and list it under class CashDispenser in Fig. 6.21. Class CashDis-
penser also “indicates whether it contains enough cash to satisfy a withdrawal request.”
Thus, we include isSufficientCashavailable, an operation that returns a value of UML
type Boolean, in class CashDispenser. Figure 6.20 also lists “receives a deposit envelope”
for class DepositSlot. The deposit slot must indicate whether it received an envelope, so
we place an operation isEnvelopeReceived, which returns a Bool ean value, in the third
compartment of class DepositSlot. [Note: A real hardware deposit slot would most likely
send the ATM a signal to indicate that an envelope was received. We simulate this
behavior, however, with an operation in class DepositSTot that class ATM can invoke to
find out whether the deposit slot received an envelope.]

We do not list any operations for class ATM at this time. We are not yet aware of any
services that class ATM provides to other classes in the system. When we implement the
system with Java code, however, operations of this class, and additional operations of the
other classes in the system, may emerge.

Identifying and Modeling Operation Parameters

So far, we have not been concerned with the parameters of our operations—we have at-
tempted to gain only a basic understanding of the operations of each class. Let’s now take
a closer look at some operation parameters. We identify an operation’s parameters by ex-
amining what data the operation requires to perform its assigned task. ‘

Consider the authenticateuser operation of class BankDatabase. To authenticare a
user, this operation must know the account number and PIN supplied by the user. Thus we
specify that operation authenticateUser takes integer parameters userAccountNumber and
userPIN, which the operation must compare to the account number and PIN of an Account
object in the database. We prefix these parameter names with “user” to avoid confusion
between the operation’s parameter names and the artribute names that belong to class
Account. We list these parameters in the class diagram in Fig, 6.22 that models only class
BankDatabase. [Nose: It is perfectly normal to model only one class in a class diagram. In this
case, we are most concerned with examining the parameters of this one class in particular, so
we omit the other classes. In class diagrams later in the case study, in which parameters are
no longer the focus of our attention, we omit these parameters to save space. Remember,
however, that the operations listed in these diagrams still have parameters.]

Recall that the UML models each parameter in an operation’s comma-separated
parameter list by listing the parameter name, followed by a colon and the parameter type
(in UML notation). Figure 6.22 thus specifies that operation authenticateUser rakes
WO parameters—userAccountNumber and userPIN, both of type Integer. When we
implement the system in Java, we will represent these parameters with int values.

6.14 Icentifying Class Operations 269

BankDatabase

‘authenticateUser{ userAccountNumber : Integer : userPIN ; Integer) ; Boolean

,getAvailableBalance(userAccountNumber:Integer):Doub}g L e o
getTotalBalance(userAccoumNumbet:Integer):Doub|e Ty
credit(userRccountNumber : Integer, amount : Double) IR
debit{ userAccountNumber : Integer, amount : Double) ~

o - R R N

Fig. 6.22 | Class BankDatabase with operation parameters.

Class BankDatabase operations getAvailableBalance, getTotalBalance, credit
and debit also each require a userAccountNumber parameter to identify the account to
which the database must apply the operations, so we include these parameters in the class
diagram of Fig. 6.22. In addition, operations credit and debit each require a Double
parameter amount to specify the amount of money to be credited or debited, respectively.

The class diagram in Fig. 6.23 models the parameters of class Account’s operations.
Operation validatePIN requires only a userPIN parameter, which contains the user-spec-
ified PIN to be compared with the PIN associated with the account. Like their counter-
parts in class BankDatabase, operations credit and debit in class Account each require a
Double parameter amount that indicates the amount of money involved in the operation.
Operations getAvailableBalance and getTotalBalance in class Account require no
additional data to perform their tasks. Note that class Account’s operations do not require
an account number parameter to distinguish berween Accounts, because these operations
can be invoked only on a specific Account object.

Figure 6.24 models class Screen with a parameter specified for operation display-
Message. This operation requires only a String parameter message that indicates the text to
be displayed. Recall that the parameter types listed in our class diagrams are in UML nota-
tion, so the String type listed in Fig. 6.24 refers to the UML type. When we implement the
system in Java, we will in fact use the Java class String to represent this parameter.

The class diagram in Fig. 6.25 specifies that operation dispenseCash of class Cash-
Dispenser takes a Double parameter amount to indicate the amount of cash (in dollars) to
be dispensed. Operation issuffici entCashAvailable also takes a Double parameter
amount to indicate the amount of cash in question.

Account

accountNumber ; Integer
‘pin:integer R
availableBalance : Double T
totalBalance : Double

validatePIN(userPIN: Integer) : Boolean
getAvailableBatance() i Double -
getTatalBalance() : Double

credit(amount : Double). .~

:g!ebit(amount : Double) - -l

O]

R AT

Fig. 6.23 | Class Account with operation parameters.

270 Chapter 6 Methods: A Deeper Look

isplayMessage(message : String) .

Fig. 6.24 | Class Screen with operation parameters.

CashDispenser
count : Integer = 500

dispenseCash(amount : Double) - o
is_SufﬁcientCa.shAvai!able(amount : D(_zyb!e): Boolean .

R ¥ N, REL L LY R e

Fig. 6.25 | Class CashDispenser with operation parameters.

Note that we do not discuss parameters for operation execute of classes BalanceIn-
quiry, Withdrawal and Deposit, operation getInput of class Keypad and operation isEn-
velopeReceived of class DepositSlot. At this point in our design process, we cannot
determine whether these operations require additional data to perform their rasks, so we
leave their parameter lists empty. As we progress through the case study, we may decide 1o
add parameters to these operations.

In this section, we have determined many of the operations performed by the classes
in the ATM system. We have identified the parameters and return types of some of the
operations. As we continue our design process, the number of operations belonging to
cach class may vary—we might find that new operations are needed or that some current
operations are unnecessary—and we might determine that some of our class operations
need additional parameters and different return types.

Software Engineering Case Study Self-Review Exercises

6.t Which of the following is not a behavior?
| a) reading data from a file

b) printing output

) text output

d) obuining input from the user

6.2 Ifyou were to add 1o the ATM system an operation that returns the amount attribute of class
Withdrawal, how and where would you specify this operation in the class diagram of Fig. 6.212

6.3 Describe the meaning of the following operation listing that might appear in a class diagram
for an object-oriented design of a calculator:

add(x : Integer, y : Integer) : Integer

Answers to Software Engineering Case Study Self-Review Exercises
6.1 c.

6.2 Tospecify an operation that retrieves the amount artribute of class Wi thdrawat, the following
operation listing would be placed in the operation (i.c., third) compartment of class Wi thdrawal:

getAmount() : Double

6.15 Wrap-Up 271

6.3 This operation listing indicates an operation named add that takes integers x and y as pa-
rameters and returns an integer value.

6.15 Wrap-Up

In this chapter, you learned more about the details of method declarations. You also
learned the difference between non-static and static methods and how to call static
methods by preceding the method name with the name of the class in which it appears
and a dot (.). You learned how to use operator + t0 perform string concatenations. You
jearned how to declare named constants using both enum types and public final static
variables. You saw how to use class Random to generate sets of random numbers that can
be used for simulations. You also learned about the scope of fields and local variables in a
class. Finally, you learned that multiple methods in one class can be overloaded by provid-
ing methods with the same name and different signatures. Such methods can be used to0
perform the same or similar tasks using different types or different numbers of parameters.

In Chapter 7, you will learn how to maintain lists and tables of data in arrays. You
will see a more elegant implementation of the application that rolls a die 6000 times and
rwo enhanced versions of our GradeBook case study that you studied in Chapters 3-5. You
will also learn how to access an application’s command-line arguments thar are passed to
method main when an application begins execution.

Summary

¢ Experience has shown that the best way to develop and maintain a large program is to construct
it from small, simple pieces, or modules. This technique is called divide and conquer.

o There are three kinds of modules in Java—methods, classes and packages. Methods are declared
within classes. Classes are typically grouped into packages so that they can be imported into pro-
grams and reused.

+ Methods allow the programmer to modularize a program by separating its tasks into self-con-
tained units. The statements in a method are written only once and hidden from other methods.

+ Using existing methods as building blocks to create new programs is a form of software reusabil-
ity that allows programmers to avoid repeating code within a program.

« A method call specifies the name of the method to call and provides the arguments that the called
method requires to perform its task. When the method call completes, the method returns either
a result or simply control to its caller.

o A class may contain static methods to perform common tasks that do not require an object of
the class. Any data a static method might require to perform its tasks can be sent to the method
as arguments in a method call. A static method is called by specifying the name of the class in
which the method is declared followed by a dot (.) and the method name, as in

ClassName .methodName(arguments)

+ Method arguments may be constants, variables or expressions.

¢ Class Math provides static methods for performing common mathematical calculations. Class
Math declares two fields that represent commonly used mathematical constants: Math.PI and
Math.E. The constant Math.Pl (3.14159265358979323846) is the ratio of a circle’s circumfer-
ence to its diameter. The constant Math.E (2.7182818284590452354) is the base value for nat-
ural logarithms (calculated with static Math method log).

