it
AN

162 Chapter 4 Control Statements: Part |

(f ptional) Software Engineering Case Study:
Identl ying Class Attributes

In Section 3.10, we began the first stage of an object-oriented design (OOD) for our ATM
system—analyzing the requirements document and identifying the classes needed to im-
plement the system. We listed the nouns and noun phrases in the requirements document
and identified a separate class for each one that plays a significant role in the ATM system.
We then modeled the classes and their relationships in a UML class diagram (Fig. 3.24).
Classes have auributes (data) and operations (behaviors). Class awributes are implemented
in Java programs as fields, and class operations are implemented as methods. In chis section,
we determine many of the auributes needed in the ATM system. In Chapter 5, we examine
how these attributes represent an object’s state. In Chapter 6, we determine class operations.

Identifying Attributes

Consider the attributes of some real-world objects: A person’s attributes include height,
weight and whether the person is left-handed, right-handed or ambidextrous. A radio’s at-
tributes include its station setting, its volume setting and its AM or FM setting. A car’s at-
tributes include its speedometer and odometer readings, the amount of gas in its tank and
what gear it is in. A personal computer’s artributes include its manufacturer (e.g., Dell, Sun,
Apple or IBM), type of screen (e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive
words and phrases in the requirements document. For each one we find thart plays a sig-
nificant role in the ATM system, we create an atribute and assign it to one or more of the
classes identified in Section 3.10. We also create atcributes to represent any additional data
that a class may need, as such needs become clear throughout the design process.

Figure 4.23 lists the words or phrases from the requirements document that describe
each class. We formed this list by reading the requirements document and identifying any
words or phrases that refer to characteristics of the classes in the system. For example, the
requirements document describes the steps taken to obtain a “withdrawal amount,” so we
list “amount” next to class Withdrawal.

Figure 4.23 leads us to create one attribute of class ATM. Class ATM maintains information
about the state of the ATM. The phrase “user is authenticated” describes a state of the ATM
(we introduce states in Section 5.11), so we include userAuthenticated as a Boolean
attribute (i.e., an ateribute thart has a value of either true or false) in class ATM. Note that
the Boolean artribute type in the UML is equivalent 1o the boolean type in Java. This
autribute indicates whether the ATM has successfully authenticated the current user—user-
Authenticated must be true for the system to allow the user to perform transactions and
access account information. This attribute helps ensure the security of the data in the system.

Classes BalanceInquiry, Withdrawal and Deposit share one attribute. Each transac-
tion involves an “account number” that corresponds to the account of the user making the
transaction. We assign an integer attribute accountNumber to each transaction class to
identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements document also suggest some dif-
ferences in the attributes required by each transaction class. The requirements document
indicates that to withdraw cash or deposit funds, users must input a specific “amount” of
money to be withdrawn or deposited, respectively. Thus, we assign to classes Withdrawal
and Deposit an artribute amount to store the value supplied by the user. The amounts of

4.15 Identifying Class Attributes 163

ATM user is authenticated
BalanceInquiry account number
Withdrawal account number

amount
Deposit account number

amount
BankDatabase [no descriptive words or phrases]
Account account number

PIN

balance
Screen [no descriptive words or phrases]
Keypad [no descriptive words or phrases]
CashDispenser begins each day loaded with 500 $20 bills
DepositSiot {no descriptive words or phrases]

Fig. 4.23 | Descriptive words and phrases from the ATM requirements.

money related to a withdrawal and a deposit are defining characteristics of these transac-
tions that the system requires for these transactions to take place. Class BalanceInquiry,
however, needs no additional data to perform its task—it requires only an account number
to indicate the account whose balance should be retrieved.

Class Account has several attributes. The requirements document states that each
bank account has an “account number” and “PIN,” which the system uses for identifying
accounts and authenticating users. We assign to class Account two integer attributes:
accountNumber and pin. The requirements document also specifies that an account main-
tains a “balance” of the amount of money in the account and that money the user deposits
does not become available for a withdrawal until the bank verifies the amount of cash in
the deposit envelope, and any checks in the envelope clear. An account must still record
the amount of money thar a user deposits, however. Therefore, we decide that an account
should represent a balance using two attributes: availableBalance and totalBalance.
Actribute availableBalance tracks the amount of money that a user can withdraw from
the account. Attribute totalBalance refers to the toral amount of money that the user has
“on deposit” (i.e., the amount of money available, plus the amount waiting to be verified
or cleared). For example, suppose an ATM user deposits $50.00 into an empty account.
The totalBalance attribute would increase to $50.00 to record the deposit, but the
availableBalance would remain at $0. [Nore: We assume that the bank updates the
availableBalance attribute of an Account some length of time after the ATM transaction
occurs, in response to confirming that $50 worth of cash or checks was found in the
deposit envelope. We assume that this update occurs through a transaction that a bank
employee performs using some piece of bank software other than the ATM. Thus, we do
not discuss this transaction in our case study.]

[N SR

4T S

.
LTS

164 Crapter £ Corrol Statements: Part |

Class CashDispenser has one attribute. The requirements document states that the
cash dispenser “begins each day loaded with 500 $20 bills.” The cash dispenser must keep
track of the number of bills it contains to determine whether enough cash is on hand to
satisfy withdrawal requests. We assign to class CashDispenser an integer attribute count,
which is initially set to 500.

For real problems in industry, there is no guarantee that requirements documents will
be rich enough and precise enough for the object-oriented systems designer to determine all
the attributes or even all the classes. The need for additional classes, attributes and behaviors
may become clear as the design process proceeds. As we progress through this case study, we
too will continue to add, modify and delete information about the classes in our system.

Modeling Attributes

The class diagram in Fig. 4.24 lists some of the autributes for the classes in our system—
the descriptive words and phrases in Fig. 4.23 lead us to identify these attributes. For sim-
plicity, Fig. 4.24 does not show the associations among classes—we showed these in
Fig. 3.24. This is a common practice of systems designers when designs are being devel-
oped. Recall from Section 3.10 that in the UML, a class’s attributes are placed in the mid-
dle compartment of the class’s rectangle. We list each attribute’s name and type separated
by a colon (:), followed in some cases by an equal sign (=) and an initial value.

Consider the userAuthenticated attribute of class ATM:

userAuthenticated : Boolean = false

This attribute declaration contains three pieces of information about the attribute. The at-
tribute name is userAuthenticated. The attribute type is Boolean. In Java, an auribute
can be represented by a primitive type, such as boolean, int or double, ora reference type
like a class—as discussed in Chapter 3. We have chosen to model only primitive-type at-
tributes in Fig. 4.24, however—we discuss the reasoning behind this decision below.
[Note: The attribute types in Fig. 4.24 are in UML notation. We will associate the rypes
Boolean, Integer and Double in the UML diagram with the primitive rypes boolean, int
and double in Java, respectively.]

We can also indicate an initial value for an auribute. The userAuthenticated
attribute in class ATM has an initial value of false. This indicates that the system initially
does not consider the user to be authenticated. If an ateribute has no initial value specified,
only its name and type (separated by a colon) are shown. For example, the accountNumber
attribute of class BalancelInquiry is an integer. Here we show no initial value, because the
value of this attribute is a number that we do not yet know. This number will be deter-
mined at execution time based on the account number entered by the current ATM user.

Figure 4.24 does not include any attributes for classes Screen, Keypad and DepositSlot.
These are important components of our system, for which our design process simply has not
yet revealed any atrributes. We may still discover some, however, in the remaining phases of
design or when we implement these classes in Java. This is perfectly normal.

s Sottware Fnyinevenng Qbservetion 10t

O Ar carly stages in the design process, classes often lack atrributes (and operations). Such classes
should not be eliminated, however, because astributes (and operations) may become evident in
the laser phases of design and implementation.

2.8 irenttere Class Attributes 165

ATM "Account

userAuthenticated : Boolean = false accountNumber : Integer
pin : Integer :
availableBalance : Double
- totalBalance : Double

Balancelnquiry

accountNumber : Integer

" Screen

Withdrawal

accountNumber : Integer
amount : Double

Keypad

Deposit ' . e

accountNumber : Integer
amount : Double CashDispenser -

count : Integer = 500 R

BankDatabase

DepositSiot

Fig. 4.24 | Classes with attributes.

Note that Fig, 4.24 also does not include attributes for class BankDatabase. Recall from
Chapter 3 that in Java, atuributes can be represented by either primitive types or reference
types. We have chosen to include only primitive-type attributes in the class diagram in
Fig. 4.24 (and in similar class diagrams throughout the case study). A reference-type
aturibute is modeled more clearly as an association (in particular, a composition) between the
class holding the reference and the class of the object to which the reference points. For
example, the class diagram in Fig. 3.24 indicates that class BankDatabase participates in a
composition relationship with zero or more Account objects. From this composition, we can
determine that when we implement the ATM system in Java, we will be required to create
an auribute of class BankDatabase to hold references to zero or more Account objects. Sim-
ilarly, we can determine reference-type attributes of class ATM that correspond to its compo-
sition relationships with classes Screen, Keypad, CashDispenser and DepositSlot. These
composition-based attributes would be redundant if modeled in Fig. 4.24, because the com-
positions modeled in Fig, 3.24 already convey the fact that the database contains informa-
tion about zero or more accounts and that an ATM is composed of a screen, keypad, cash
dispenser and deposit slot. Software developers typically model these whole/part relation-
ships as compositions rather than as attributes required to implement the relationships.

The class diagram in Fig. 4.24 provides a solid basis for the structure of our model,
but the diagram is not complete. In Section 5.11, we identify the states and activities of

