
3/16/2017

Graphical user interfaces in Java 1

An Introduction To Graphical
User Interfaces

You will learn about the event-driven
model and how to create simple

graphical user interfaces (GUI’s) in
Java

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of this programs will not be in sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to understand the concepts and follow the examples
illustrating those concepts if you don’t do a little preparatory
work.

• Also the program code is more complex than most other
examples.

• For these reasons tracing the code in this section is more
challenging

3/16/2017

Graphical user interfaces in Java 2

James Tam

Don’t Run The GUI Code Via SSH/Putty!

• The former is graphical

• The latter is text-only

James Tam

Options: Writing GUI Code At Home

1. Install JDK on your home computer: edit, compile and run
your programs locally.

2. Use JDK on the CPSC network:
a) Edit and compile your programs on the CPSC network using a remote

login program (such as Putty) and a text-based editor (such as Emacs).
The java compiler is called: javac

b) Transfer your compiled byte code files (.class) from your CPSC UNIX
account to your home computer using a file transfer program (e.g.,
Filezilla, secure FTP) although you will have learn its usage on your own

• There’s no time to take about this in class but you can ask questions about
Filezilla after class.

c) On your home computer open a command line (‘cmd’ in Windows) and
run the java interpretter: java (Because program execution is occurring
locally the graphics will be drawn by your computer and not via the
remote login program).

3/16/2017

Graphical user interfaces in Java 3

Components

• They are many types of graphical controls and displays
available:
–JButton, JFrame, JLabel, JList, JTextArea, Window

• A graphical component is also known as a “widget”

• For Sun’s online documentation refer to the url:
–http://download.oracle.com/javase/7/docs/api/ (especially
java.awt.event, javax.swing.event, and javax.swing).

Containers

• A special type of Component that is used to hold/contain
other components (subclass of the basic Component class).

• Can be used to group components on the screen (i.e., one
container holds another container which in turn groups a
number of controls).

Container

“Sub-
containers”

http://download.oracle.com/javase/7/docs/api/

3/16/2017

Graphical user interfaces in Java 4

James Tam

Containers (2)

• You must have at least one container object for your GUI:

– Examples: JPanel, JWindow, JDialog, JFrame

– (The most likely one for the assignment is JFrame)

• Components which have been added to a container will
appear/disappear and be garbage collected along with the
container.

Some Relevant Java GUI libraries

1. Java classes for the Components and Containers
– e.g., JButton class…

– …located in javax.swing (import javax.swing.* or import
javax.swing.<class name>)

3/16/2017

Graphical user interfaces in Java 5

James Tam

Some Relevant Java GUI libraries (2)

2. Java classes with the code to react to user-initiated events
– e.g., code that executes when a button is pressed

– java.awt.event (import java.awt.event.*, import
javax.swing.event.*)

class ButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

: : :

}

}

Hierarchy: Important Widget Classes

Component

Container

Window

Frame

JComponent

AbstractButton

JButton

JList JLabel JTextComponent

JTextField

JFrame

3/16/2017

Graphical user interfaces in Java 6

Some Relevant Java GUI Classes For This Section

GridBagLayout

JButton

JLabel

JTextField

JList

GridBagConstraints

???

JFrame

WindowAdaptor

???

ActionListener

Bold = you create

Not bold = come
predefined in Java

Traditional Software
•Program control is largely determined by the program through
a series of sequential statements.

Example

:

if (num >= 0)

{

// Statements for the body of the if

}

else

{

// Statements for the body of the else

}

When num is

non-negative

Num is

negative

3/16/2017

Graphical user interfaces in Java 7

Traditional Software
•The user can only interact with the program at places that are
specified by the program (e.g., when an input statement is
encountered).

Example
Scanner aScanner = new Scanner (System.in);

System.out.print(“Enter student ID number: “);

id = aScanner.nextInt ();

Event-Driven Software

RAM

OS

Program

Current point of

execution

Current point of

execution

Current point of

execution

• Program control can also be sequential

3/16/2017

Graphical user interfaces in Java 8

Event-Driven Software

RAM

OS

Program

• In addition program control can also be determined by
events

When???

New point of execution (reacts to the key

press)

Last execution point

Image: Keyboard and “finger of Tam” by James Tam

Characteristics Of Event Driven Software

•Program control can be determined by events as well as
standard program control statements.

•A typical source of these events is the user.

•These events can occur at any time.

3/16/2017

Graphical user interfaces in Java 9

Most Components Can Trigger Events

• Graphical objects can be manipulated by the user to trigger
events.

• Each graphical object can have 0, 1 or many events that can
be triggered.

“Window” Classes

Window

JFrame

3/16/2017

Graphical user interfaces in Java 10

The “Window” Class Hierarchy

Window

Frame

JFrame

Class JFrame

• For full details look at the online API:
– http://download.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

• Some of the more pertinent methods:

– JFrame (“<Text on the title bar>”)

– setSize (<pixel width>, <pixel height>)

– setVisible (<true/false>)

– setDefaultCloseOperation (<class constants>1)

1 DISPOSE_ON_CLOSE, HIDE_ON_CLOSE, DO_NOTHING_ON_CLOSE

http://download.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

3/16/2017

Graphical user interfaces in Java 11

Example: Creating A Frame That Can Close (And
Cleanup Memory After Itself)

•Location of the full example:
/home/219/examples/gui/1frame

JFrameDriver

Example: Creating A Frame That Can Close (And
Cleanup Memory After Itself)

import javax.swing.JFrame;

public class Driver

{

public static void main (String [] args)

{

JFrame mf = new JFrame ("Insert title here");

mf.setSize (300,200);

mf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

mf.setVisible(true);

}

}

3/16/2017

Graphical user interfaces in Java 12

Pitfall 1: Showing Too Early

• When a container holds a number of components the
components must be added to the container (later examples).

• To be on the safe side the call to the “setVisible()”
method should be done after the contents of the container
have already been created and added.

Window Events

• The basic JFrame class provides basic capabilities for common
windowing operations: minimize, maximize, resize, close.

• However if a program needs to perform other actions (i.e.,
your own custom code) when these events occur the built in
approach won’t be sufficient.
– E.g., the program is to automatically save your work to a file when you

close the window.

3/16/2017

Graphical user interfaces in Java 13

Steps In The Event Model For Handling A Frame
Event: Window Closing

1) Define/instantiate the appropriate listener class/object.

2) The frame must register all interested event listeners.
– Track where notifications should be sent

3) The user triggers the event by closing the window

4) The window sends a message to all listeners of that event.
– Send the notifications when the even occurs

5) The window event listener runs the code to handle the event
(e.g., save information to a file).
– When the object with an ‘interest’ in the event has been notified it

executes a method appropriate to react to the event.

1. The Frame Must Register All Interested

Event Listeners.

…

class MyWindowListener extends
WindowAdapter

{

}

www.colourbox.com

3/16/2017

Graphical user interfaces in Java 14

2. The User Triggers The Event By Closing
The Window

3. The Window Sends A Message To All
Listeners Of That Event.

public class MyWindowListener extends
WindowAdapter

{

public void windowClosing

(WindowEvent e)

{

}

}

3/16/2017

Graphical user interfaces in Java 15

4. The Event Listener Runs The Code To Handle
The Event.

public class MyWindowListener extends
WindowAdapter

{

public void windowClosing

(WindowEvent e)

{

/* Code to react to event * /

JFrame aFrame = (JFrame)

e.getWindow();

aFrame.setTitle("Closing

window...");

aFrame.setVisible(false);

aFrame.dispose();

}

}

4. The Event Listener Runs The Code To Handle
The Event.

public class MyWindowListener extends
WindowAdapter

{

public void windowClosing

(WindowEvent e)

{

/* Code to react to event * /

JFrame aFrame = (JFrame)

e.getWindow();

aFrame.setTitle("Closing

window...");

aFrame.setVisible(false);

aFrame.dispose();

}

}

3/16/2017

Graphical user interfaces in Java 16

An Example Of Handling A Frame Event

•Location of the example:
/home/219/examples/gui/2windowEvents

An Example Of Handling A Frame Event (2)

MyWindowListener

WindowAdapter

MyFrame

JFrame

Driver

3/16/2017

Graphical user interfaces in Java 17

The Driver Class

import javax.swing.JFrame;

public class Driver
{

public static final int WIDTH = 300;
public static final int HEIGHT = 200;
public static void main (String [] args)
{

MyFrame aFrame = new MyFrame ();
MyWindowListener aListener = new MyWindowListener() ;
aFrame.addWindowListener(aListener);
aFrame.setSize (WIDTH,HEIGHT);
aFrame.setVisible(true);

}
}

Class MyFrame

import javax.swing.JFrame;

public class MyFrame extends JFrame

{

// More code will be added in later examples.

}

3/16/2017

Graphical user interfaces in Java 18

Class MyWindowListener

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;

public class MyWindowListener extends WindowAdapter {
public void windowClosing (WindowEvent e) {
JFrame aFrame = (JFrame) e.getWindow();
aFrame.setTitle("Closing window...");
// Pause program so user can see the window text
try

Thread.sleep(3000);
catch (InterruptedException ex)

System.out.println("Pausing of program was
interrupted");

aFrame.setVisible(false);
aFrame.dispose();

}
}

Steps In The Event Model For Handling
A Button Event

1) Define/instantiate the appropriate listener class/object.

2) The button must register all interested event listeners.

3) The user triggers an event by pressing a button.

4) The button sends a message to all listeners of the button
press event.

5) The button listener runs the code to handle the button press
event.

3/16/2017

Graphical user interfaces in Java 19

1. The Graphical Component Must Register All
Interested Event Listeners.

Button

…

public class
MyButtonListener
implements
ActionListener

{

}

www.colourbox.com

2. The User Triggers An Event By Pressing
The Button

3/16/2017

Graphical user interfaces in Java 20

3. The Component Sends A Message To All
Registered Listeners For That Event

public class MyButtonListener
implements ActionListener

{

public void actionPerformed

(ActionEvent e)

{

}

}

3. The Component Sends A Message To All
Registered Listeners For That Event

public class MyButtonListener
implements ActionListener

{

public void actionPerformed

(ActionEvent e)

{

JButton b = (JButton)

e.getSource();

b.setLabel("Stop pressing

me!");

}

}

3/16/2017

Graphical user interfaces in Java 21

3. The Component Sends A Message To All
Registered Listeners For That Event

public class MyButtonListener
implements ActionListener

{

public void actionPerformed

(ActionEvent e)

{

JButton b = (JButton)

e.getSource();

b.setLabel("Stop pressing

me!");

}

}

An Example Of Handling A Button Event

•Location of the example:
/home/219/examples/gui/3ButtonEvents

3/16/2017

Graphical user interfaces in Java 22

An Example Of Handling A Button Event (2)

MyFrame

WindowAdaptor

Driver

JButton ActionListener

MyButtonListener

MyWindowListener

JFrame

An Example Of Handling A Button Event:
The Driver Class

import javax.swing.JButton;

public class Driver

{

public static final int WIDTH = 300;

public static final int HEIGHT = 200;

public static void main (String [] args)

{

MyFrame aFrame = new MyFrame ();

MyWindowListener aWindowListener = new

MyWindowListener();

aFrame.addWindowListener(aWindowListener);

aFrame.setSize (WIDTH,HEIGHT);

3/16/2017

Graphical user interfaces in Java 23

An Example Of Handling A Button Event:
The Driver Class (2)

JButton aButton = new JButton("Press me.");

MyButtonListener aButtonListener =

new MyButtonListener();

aButton.addActionListener(aButtonListener);

aFrame.add(aButton);

aFrame.setVisible(true);

}

}

An Example Of Handling A Button Event:
The ButtonListener Class

import javax.swing.JButton;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class MyButtonListener implements ActionListener

{

public void actionPerformed (ActionEvent e)

{

JButton aButton = (JButton) e.getSource();

aButton.setText("Stop pressing me!");

}

}

3/16/2017

Graphical user interfaces in Java 24

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

3/16/2017

Graphical user interfaces in Java 25

Layout Is Based On Spatial (X,Y) Coordinates

Width e.g., w = 300

Height e.g., h = 200

e.g. MyFrame my =new MyFrame ();

my.setSize(300,200);

Layout Is Based On Spatial Coordinates

x = 0 x = 300

y = 0

y = 200

3/16/2017

Graphical user interfaces in Java 26

Coordinates Of Components: Relative To
The Container

x = 50

y = 50

x = 100

y = 100

Width = 100, Height = 20

Width = 100, Height = 20

x = 0

y = 0

Pitfall 2: Invisible Component

• Don’t forget that coordinates (0,0) are covered by the title bar
of the frame.

• Components added at this location may be partially or totally
hidden by the title bar.

3/16/2017

Graphical user interfaces in Java 27

A Example With Manual Layout

•Location of the example:
/home/219/examples/gui/4manualLayout

An Example With Manual Layout:
The Driver Class

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JFrame;

public class Driver {

public static final int WIDTH_FRAME = 300;

public static final int HEIGHT_FRAME = 300;

public static final int X_COORD_BUTTON = 100;

public static final int Y_COORD_BUTTON = 100;

public static final int WIDTH_BUTTON = 100;

public static final int HEIGHT_BUTTON = 20;

public static final int X_COORD_LABEL = 50;

public static final int Y_COORD_LABEL = 50;

public static final int WIDTH_LABEL = 100;

public static final int HEIGHT_LABEL = 20;

3/16/2017

Graphical user interfaces in Java 28

An Example With Manual Layout:
The Driver Class (2)

public static void main (String [] args) {
JFrame aFrame = new JFrame ();
aFrame.setLayout(null);
aFrame.setSize (WIDTH_FRAME,HEIGHT_FRAME);
JButton aButton = new JButton("Press me.");
aButton.setBounds(X_COORD_BUTTON,

Y_COORD_BUTTON,
WIDTH_BUTTON,
HEIGHT_BUTTON);

JLabel aLabel = new JLabel ("Simple label");
aLabel.setBounds(X_COORD_LABEL,

Y_COORD_LABEL,
WIDTH_LABEL,
HEIGHT_LABEL);

aFrame.add(aButton);
aFrame.add(aLabel);
aFrame.setVisible(true);

}
}

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

3/16/2017

Graphical user interfaces in Java 29

Java Layout Classes

•There are many implementations (this diagram only includes
the original classes that were implemented by Sun).

LayoutManager

BorderLayout FlowLayout GridLayoutCardLayout GridBagLayout

BorderLayout (“Compass Directions”)

From Java: AWT Reference p. 256

3/16/2017

Graphical user interfaces in Java 30

CardLayout (“Tab-Like”)

From Java: AWT Reference p. 264

FlowLayout (Adapts To Resizing “Web-Like”)

From Java: AWT Reference p. 253

3/16/2017

Graphical user interfaces in Java 31

GridLayout

From Java: AWT Reference p. 260

GridBagLayout

From Java: AWT Reference p. 269

3/16/2017

Graphical user interfaces in Java 32

Implementing A GUI When Using The
GridBagLayout

• Use graph paper or draw out a table.

Label1

Button1

0 1 2

0

1

2

x coordinates in the grid

y

coordinates

in the grid

Implementing A GUI When Using The
GridBagLayout

• Use graph paper or draw out a table.

Label1

Button1

0 1 2

0

1

2

x coordinates in the grid

y

coordinates

in the grid

3/16/2017

Graphical user interfaces in Java 33

GridBagConstraints

•Goes with the GridBagLayout class.

•Because the GridBagLayout doesn’t know ‘how’ to display
components you also need GridBagConstraints to
constrain things (determine the layout).

•GridBagConstraints indicates how components should be
displayed for a particular GridBagLayout.

•For more complete information see:
–http://java.sun.com/javase/7/docs/api/java/awt/GridBagConstr
aints.html

Some Important Parts Of The
GridBagConstraints Class

public class GridBagConstraints

{

// Used in conjunction with the constants below to determine
// the resize policy of the component

public int fill;

// Apply only if there is available space.

// Determine in which direction (if any) that the component

// expands to fill the space.

public final static int NONE;

public final static int BOTH;

public final static int HORIZONTAL;

public final static int VERTICAL;

3/16/2017

Graphical user interfaces in Java 34

GridBagContraints: Fill Values

Horizontal Vertical None

Some Important Parts Of The
GridBagConstraints Class (2)

// Position within the grid

public int gridx;

public int gridy;

// Number of grid squares occupied by a component

public int gridwidth;

public int gridheight;

3/16/2017

Graphical user interfaces in Java 35

Some Important Parts Of The
GridBagConstraints Class (3)

// Used in conjunction with the constants below to determine
// that the component drift if the space available is larger
// than the component.

public int anchor;

// Only if the component is smaller than the available space.

// Determine the anchor direction

public final static int CENTER;

public final static int EAST;

public final static int NORTH;

public final static int NORTHEAST;

public final static int NORTHWEST;

public final static int SOUTH;

public final static int SOUTHEAST;

public final static int SOUTHWEST;

public final static int WEST;

Some Important Parts Of The
GridBagConstraints Class (4)

// With a particular ‘cell’ in the grid this attribute

// specifies the amount of padding around the component

// to separate it from other components.

// Usage:

// insets = new Insets(<top>,<left>,<bottom>,<right>);

// Example (Set top, left, bottom, and right)

// insets = new Insets(0, 0, 0, 0); // No padding (default)

public insets;

Insets = 0: no padding Insets = 10: many spaces/padding

3/16/2017

Graphical user interfaces in Java 36

An Example Using The GridBagLayout

•Location of the example:
/home/219/examples/gui/5gridbaglayout

An Example Using The GridBagLayout:
The Driver Class

public class Driver

{

public static final int WIDTH = 400;

public static final int HEIGHT = 300;

public static void main (String [] args)

{

MyFrame aFrame = new MyFrame ();

aFrame.setSize(WIDTH,HEIGHT);

aFrame.setVisible(true);

}

}

3/16/2017

Graphical user interfaces in Java 37

An Example Using The GridBagLayout:
Class MyFrame

public class MyFrame extends Jframe {

private JButton left;

private JButton right;

private JLabel aLabel;

private GridBagLayout aLayout;

GridBagConstraints aConstraint;

public MyFrame () {

MyWindowListener aWindowListener = new MyWindowListener ();

addWindowListener(aWindowListener);

aConstraint = new GridBagConstraints();

Scanner in = new Scanner(System.in);

System.out.print("Buffer size to pad the grid: ");

int padding = in.nextInt();

An Example Using The GridBagLayout:
Class MyFrame (2)

left = new JButton("L: Press me");

right = new JButton("R: Press me");

MyButtonListener aButtonListener = new MyButtonListener();

left.addActionListener (aButtonListener);

right.addActionListener (aButtonListener);

aLabel = new JLabel("Simple label");

aConstraint.insets = new

Insets(padding,padding,padding,padding);

aLayout = new GridBagLayout();

setLayout(aLayout); // Calling method of super class.

addWidget(aLabel, 0, 0, 1, 1);

addWidget(left, 0, 1, 1, 1);

addWidget(right, 1, 1, 1, 1);

}

3/16/2017

Graphical user interfaces in Java 38

An Example Using The GridBagLayout:
Class MyFrame (3)

public void addWidget (Component widget,
int x,
int y,
int w,
int h)

{
aConstraint.gridx = x;
aConstraint.gridy = y;
aConstraint.gridwidth = w;
aConstraint.gridheight = h;
aLayout.setConstraints (widget, aConstraint);
add(widget); // Calling method of super class.

}
} // End of definition for class MyFrame

Advanced Uses Of GridBagLayout

Button gridx

(col)

gridy

(row)

grid-

width

grid-

height

One 0 0 1 1

Two 1 0 1 1

Three 2 0 1 1

Four 0 1 2 1

Five 2 1 1 2

Six 0 2 1 1

Seven 1 2 1 1

From Java: AWT Reference p. 269

3/16/2017

Graphical user interfaces in Java 39

Layout Of GUI Components

• JT’s note (and opinion): learning how to layout GUI
components manually will teach you “how things work”.
– That’s because you have to handle many details yourself (either

manually or by using a layout class).

– Except when writing small programs with a simple GUI (assignment)
doing things manually is just too much of a hassle.

• The programmer focuses on the wrong details (how do I get the
programming language to ‘do stuff’ as opposed to how do I create a
GUI that is ‘user-friendly’).

– In other cases (‘real life programs’) an IDE is used.

– Some examples:

• Sun’s NetBeans IDE:
http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html

• IBM’s Eclipse IDE:

http://www.ibm.com/developerworks/opensource/library/os-ecvisual/

Components Effecting The State Of Other
Components

•Location of the example:
/home/219/examples/gui/6controlAffectControls

http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html
http://www.ibm.com/developerworks/opensource/library/os-ecvisual/

3/16/2017

Graphical user interfaces in Java 40

Components Effecting The State Of Other
Components: The Driver Class

public class Driver

{

public static final int WIDTH = 800;

public static final int HEIGHT = 600;

public static void main (String [] args)

{

MyFrame aFrame = new MyFrame ();

aFrame.setSize(WIDTH,HEIGHT);

aFrame.setVisible(true);

}

}

Components Effecting The State Of Other
Components: Class MyFrame

public class MyFrame extends JFrame

{

private JLabel aLabel1;

private JLabel aLabel2;

private JButton aButton;

private MyButtonListener aButtonListener;

3/16/2017

Graphical user interfaces in Java 41

Components Effecting The State Of Other
Components: Class MyFrame (2)

public MyFrame ()

{

MyWindowListener aWindowListener =

new MyWindowListener();

addWindowListener(aWindowListener);

aLabel1 = new JLabel("Label 1");

aLabel2 = new JLabel("Label 2");

aLabel1.setBounds(100,100,100,30);

aLabel2.setBounds(300,100,100,30);

Components Effecting The State Of Other
Components: Class MyFrame (3)

aLabel1 = new JLabel("Label 1");

aLabel2 = new JLabel("Label 2");

aLabel1.setBounds(100,100,100,30);

aLabel2.setBounds(300,100,100,30);

aButtonListener = new MyButtonListener();

aButton = new JButton("Press for multiple effects");

aButton.addActionListener(aButtonListener);

aButton.setBounds(150,300,200,50);

add(aLabel1);

add(aLabel2);

add(aButton);

setLayout(null);

}

public JLabel getLabel1 () { return aLabel1; }

public JLabel getLabel2 () { return aLabel2; }

}

3/16/2017

Graphical user interfaces in Java 42

James Tam

Note: JFrame Containment

• A JFrame actually contains just one GUI component, the
content pane.

• GUI widgets that appear to be added to the JFrame are
actually added to the content pane (a container in and of
itself). Get the components inside the content pane to actually
get the widgets that appeared to be added to the JFrame.

JFrame

ContentPane

To access controls “added
to the frame”

aContainer = aFrame.getContentPane()

component = aContainer.getComponent(0)Components

First

Second

Etc

myFrame.add(aButton)

James Tam

Components Effecting The State Of Other
Components: Class MyButtonListener

public void actionPerformed (ActionEvent e)

{

JButton aButton = (JButton) e.getSource();

MyFrame aFrame = (MyFrame)

aButton.getRootPane().getParent();

JLabel aLabel1 = aFrame.getLabel1();

JLabel aLabel2 = aFrame.getLabel2();

Container aContainer = aFrame.getContentPane();

// First item added to list, first label

Component aComponent = aContainer.getComponent(0);

if (aComponent instanceof JLabel) {

aLabel1 = (JLabel) aComponent;

aLabel1.setText("Effect1");

}

3/16/2017

Graphical user interfaces in Java 43

James Tam

Components Effecting The State Of Other
Components: Class MyButtonListener (2)

// Second item added to list, second label

aComponent = aContainer.getComponent(1);

if (aComponent instanceof JLabel) {

aLabel2 = (JLabel) aComponent;

aLabel2.setText("Effect1");

}

}

// From class MyFrame

add(aLabel1); // Added first

add(aLabel2); // Added second

add(aButton);

Last Example: Critique

• The implementation of the button listener class required knowledge of the
implementation of the frame listener class.
– The order in which controls are added to the frame must be known!

– What if there are two different authors for these classes?

– This approach couples the implementation of two classes (changes can introduce errors)

// From class MyButtonListener

Component aComponent = aContainer.getComponent(0);

if (aComponent instanceof JLabel) {

aLabel1 = (JLabel) aComponent;

aLabel1.setText("Effect1");

}

3/16/2017

Graphical user interfaces in Java 44

Components Effecting The State Of Other
Components: Alternate Approach

•Location of the example:
/home/219/examples/gui/7controlAffectControlsActionCommand

James Tam

The Driver Class

public class Driver

{

public static final int WIDTH = 800;

public static final int HEIGHT = 600;

public static void main (String [] args)

{

MyFrame aFrame = new MyFrame ();

aFrame.setSize(WIDTH,HEIGHT);

aFrame.setVisible(true);

}

}

3/16/2017

Graphical user interfaces in Java 45

James Tam

Class MyFrame

public class MyFrame extends Jframe {

public static final String B1IDENTIFIER = "1";

public static final String B2IDENTIFIER = "2";

private JButton button1;

private JButton button2;

private MyButtonListener aButtonListener;

public MyFrame() {

MyWindowListener aWindowListener = new

MyWindowListener();

addWindowListener(aWindowListener);

aButtonListener = new MyButtonListener();

James Tam

Class MyFrame (2)

button1 = new JButton("Button1");

button1.setActionCommand(B1IDENTIFIER);

button1.setBounds(100,100,100,30);

button1.addActionListener(aButtonListener);

button2 = new JButton("Button2");

button2.setActionCommand(B2IDENTIFIER);

button2.setBounds(300,100,100,30);

button2.addActionListener(aButtonListener);

add(button1);

add(button2);

setLayout(null);

}

}

3/16/2017

Graphical user interfaces in Java 46

James Tam

Class MyButtonListener

• Identifying the buttons

public class MyButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

JButton aButton = (JButton) e.getSource();

MyFrame aFrame = (MyFrame)

aButton.getRootPane().getParent();

String temp = aButton.getActionCommand();

if(temp.equalsIgnoreCase(MyFrame.B1IDENTIFIER))

aFrame.setTitle("Button 1 pressed");

else if(temp.equalsIgnoreCase(MyFrame.B2IDENTIFIER))

aFrame.setTitle("Button 2 pressed");

}

}

public void actionPerformed (ActionEvent e)
{

String s = e.getActionCommand();

}

This Version: Critique

• There was one method handles events for all the buttons.

• Inside that method there was a need to ‘identify’ the source of
the event.
– The method could get very long even though there are few sources of

events (buttons)

– What if the GUI has dozens of buttons or other controls

if(temp.equalsIgnoreCase(MyFrame.B1IDENTIFIER))

aFrame.setTitle("Button 1 pressed");

else if(temp.equalsIgnoreCase(MyFrame.B2IDENTIFIER))

aFrame.setTitle("Button 2 pressed");

3/16/2017

Graphical user interfaces in Java 47

Anonymous Objects/Anonymous Class

• If an object needs to be created but never directly referenced
then it may be candidate for being created as an anonymous
object.

• An example of where an anonymous object may be created is
an event listener.

• Creating an anonymous object:

JButton aButton = new JButton("Press me.");

aButton.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e)

{

JButton aButton = (JButton)

e.getSource();

aButton.setText("Stop pressing me!");

}

});

No reference

name

Awkward if

complex

programming

is required.

One advantage:

code for widget

and event

handler are in the

same place.

An Example Using Anonymous Class And Object

• Location of the example:
/home/219/examples/gui/8controlAffectControlsAnonymousObjectClass

3/16/2017

Graphical user interfaces in Java 48

Driver Class

public class Driver

{

public static final int WIDTH = 400;

public static final int HEIGHT = 300;

public static void main (String [] args)

{

MyFrame aFrame = new MyFrame ();

aFrame.setTitle("Original");

aFrame.setSize(WIDTH,HEIGHT);

aFrame.setVisible(true);

}

}

Class MyFrame

public class MyFrame extends JFrame

{

private JLabel aLabel;

private GridBagLayout aLayout;

private GridBagConstraints aConstraint;

private JButton left;

private JButton right;

public MyFrame ()

3/16/2017

Graphical user interfaces in Java 49

Class MyFrame (2)

public MyFrame () {

MyWindowListener aWindowListener =

new MyWindowListener ();

addWindowListener(aWindowListener);

aConstraint = new GridBagConstraints();

left = new JButton("LEFT: Press right button.");

left.setBackground(Color.lightGray);

James Tam

Class MyFrame (3)

left.addActionListener(new ActionListener()

{ // class definition

public void actionPerformed(ActionEvent e) {

// method definition: left button

JButton left = (JButton) e.getSource();

MyFrame aFrame = (MyFrame)

left.getRootPane().getParent();

String title = aFrame.getTitle();

aFrame.setTitle("Left pressed");

right = aFrame.getRight();

right.setBackground(Color.green);

left.setBackground(Color.lightGray);

timeDelay();

aFrame.setTitle(title);

} // End method definition

} // End class definition

); // End of parameter list for addActionListener()

3/16/2017

Graphical user interfaces in Java 50

James Tam

Class MyFrame (4)

right = new JButton("RIGHT: Press left button");

right.setBackground(Color.lightGray);

right.addActionListener(new ActionListener()

{ // Class definition

public void actionPerformed(ActionEvent e) {

// Method definition

JButton right = (JButton) e.getSource();

MyFrame aFrame = (MyFrame)

right.getRootPane().getParent();

String title = aFrame.getTitle();

JButton left = aFrame.getLeft();

aFrame.setTitle("Right pressed");

left.setBackground(Color.green);

right.setBackground(Color.lightGray);

timeDelay();

aFrame.setTitle(title);

}

});

James Tam

Class MyFrame (5)

private void timeDelay ()

{

try {

Thread.sleep(3000);

}

catch (InterruptedException e) {

System.out.println("Problem with pausing of the

program");

}

}

public JButton getLeft() { return(left); }

public JButton getRight() { return(right); }

}

3/16/2017

Graphical user interfaces in Java 51

James Tam

‘Friend Functions’

• Some programming languages allow classes to be ‘friendly’.

• A method can be declared in class X so it’s accessible by
another class Y even though the method is outside of the
scope of class Y.

• The ‘friendly’ method of class X allows access to all of the
privates & protected parts of X to instances of Y.

• It’s used when instances of classes X & Y operate closely.

• Java does not directly allow for friend functions but other
languages such as C++ do.

• Does this violate encapsulation?

Nested/Inner Classes

• Occurs when one class is defined inside of another class:
public class X {

private class Y {

}

}

• Why nest class definitions1:

– It is a way of logically grouping classes that are only used in one place.

– Nested classes can lead to more readable and maintainable code.

– It increases encapsulation (inner class hidden from all classes except the outer
class).

• Similar to declaring anonymous objects, nesting classes may be used when creating
event listeners.

1 For more information: http://download.oracle.com/javase/tutorial/java/javaOO/nested.html

Inner class

Outer class

3/16/2017

Graphical user interfaces in Java 52

Example: Inner Classes

•Location Of example:
/home/219/examples/gui/9buttonAlternateInnerClasses

Example: Inner Classes (2)

MyFrame

Driver

JFrame

MyWindowListener

WindowAdaptor

JButton

ActionListener

???

3/16/2017

Graphical user interfaces in Java 53

The Driver Class

import javax.swing.JButton;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class Driver
{

public static final int WIDTH = 300;
public static final int HEIGHT = 200;
public static void main (String [] args)
{

MyFrame aFrame = new MyFrame ();
aFrame.setSize (WIDTH,HEIGHT);
JButton aButton = new JButton("Press me.");

The Driver Class (2)

// Anonymous object/class

aButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

JButton aButton = (JButton) e.getSource();

aButton.setText("Stop pressing me!");

} // End: Defining method actionPerformed

} // End: Defining anonymous object/class

); // End: Parameter list for addActionListener

aFrame.add(aButton);

aFrame.setVisible(true);

}

}

3/16/2017

Graphical user interfaces in Java 54

Class MyFrame: Outline

public class MyFrame extends JFrame

{

// MyFrame’s private parts

public MyFrame ()

{

: :

}

// Inner class defined within the MyFrame class.

// Private because it's only used by the MyFrame class.

private class MyWindowListener extends WindowAdapter

{

public void windowClosing (WindowEvent e)

{

: :

}

}

}

Definition of class MyWindowListener
entirely within definition of class MyFrame

•Listens for events for that window
NOTE: The inner class can access
the outer class’ privates! “Friend”

Class MyFrame (2)

import javax.swing.JFrame;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

public class MyFrame extends JFrame
{

public MyFrame ()
{

MyWindowListener aWindowListener = new
MyWindowListener();

this.addWindowListener(aWindowListener);
}

3/16/2017

Graphical user interfaces in Java 55

Class MyFrame (3)

// Inner class defined within the MyFrame class.
// Private because it's only used by the MyFrame class.
private class MyWindowListener extends WindowAdapter {
public void windowClosing (WindowEvent e) {

JFrame aFrame = (JFrame) e.getWindow();
aFrame.setTitle("Closing window...");
delay();
aFrame.setVisible(false);
aFrame.dispose();

}
} // End: Definition of class MyWindowListener

private void delay() {

try {

Thread.sleep(3000); }

catch (InterruptedException ex) {

System.out.println("Pausing of program was interrupted");
}

}
} // End: Definition of class MyFrame

Proof that the inner class
can access the outer class’
privates

James Tam

Types Of Input Text Fields: Short

• JTextField: Used to get short user input
– e.g., entering login or personal information.

• Location of the full example:
/home/219/examples/gui/10textFieldExample

Bing search query

3/16/2017

Graphical user interfaces in Java 56

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

MyFrame aFrame = new MyFrame();

}

}

James Tam

Class MyFrame

public class MyFrame extends JFrame implements
ActionListener

{

private JTextField text;

private GridBagLayout aLayout;

private GridBagConstraints aConstraint;

3/16/2017

Graphical user interfaces in Java 57

James Tam

Class MyFrame: Using JTextField

public MyFrame()

{

setSize(300,200);

setDefaultCloseOperation

(JFrame.DISPOSE_ON_CLOSE);

aConstraint = new GridBagConstraints();

aLayout = new GridBagLayout();

setLayout(aLayout);

text = new JTextField("default");

text.addActionListener(this);

addWidget(text,0,0,1,1);

setVisible(true);

}

James Tam

Class MyFrame: Reacting To The Event

public void actionPerformed(ActionEvent e)

{

setTitle("enter");

}

}

3/16/2017

Graphical user interfaces in Java 58

James Tam

Types Of Input Text Fields: Long

• Getting more extensive input
– e.g., feedback form, user review/comments on a website

– Requires the use of another control: JTextArea

• Location of the full example:
/home/219/examples/gui/11textAreaExample

Facebook status update field

James Tam

The Driver Class: Using JTextArea

public class Driver {

public static void main(String [] args) {

JFrame frame = new JFrame();

frame.setSize(400,250);

JTextArea text = new JTextArea();

JScrollPane scrollPane = new JScrollPane(text);

text.setFont(new Font("Times",Font.BOLD, 32));

for (int i = 0;i < 10; i++)

text.append("foo" + i + "\n");

frame.add(scrollPane);

MyDocumentListener l = new MyDocumentListener();

(text.getDocument()).addDocumentListener(l);

frame.setVisible(true);

frame.setLayout(null);

frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

}

}

3/16/2017

Graphical user interfaces in Java 59

James Tam

The Text Listener: MyDocumentListener

public class MyDocumentListener implements DocumentListener {

public void changedUpdate(DocumentEvent e) { // Modify

System.out.println("updated");

method(e);

}

public void insertUpdate(DocumentEvent e) { // Add

System.out.println("insert");

System.out.println(e.getLength());

method(e);

}

public void removeUpdate(DocumentEvent e) { // Remove

System.out.println("removed");

method(e);

}

}

James Tam

The Text Listener: MyDocumentListener (2)

public void method(DocumentEvent e) {

Document d = e.getDocument();

try {

String s = d.getText(0,d.getLength());

System.out.println(s);

}

catch (BadLocationException ex)

{

System.out.println(ex);

}

}

3/16/2017

Graphical user interfaces in Java 60

James Tam

Dialog Boxes (If There Is Time)

• Typically take the form of a small window that ‘pops up’ during
program execution.

Part of the
login ‘dialog’

James Tam

JDialog Example

• Location of the full example:
/home/219/examples/gui/12dialogExample

3/16/2017

Graphical user interfaces in Java 61

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

MyDialog aDialog = new MyDialog();

aDialog.setBounds(100,100,300,200);

aDialog.setVisible(true);

}

}

James Tam

Class MyDialog

public class MyDialog extends JDialog implements ActionListener

{

private static final int MATCH = 0;

private static final String ACTUAL_PASSWORD = "123456";

private JPasswordField aPasswordField;

private JLabel aLabel;

public MyDialog() {

aLabel = new JLabel("Enter password");

aLabel.setBounds(50,20,120,20);

aPasswordField = new JPasswordField();

aPasswordField.setBounds(50,40,120,20);

aPasswordField.addActionListener(this); //Event handler

setLayout(null);

addControls(); // #2

setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

}

3/16/2017

Graphical user interfaces in Java 62

James Tam

Class MyDialog (2)

public void addControls()

{

add(aLabel);

add(aPasswordField);

}

James Tam

Class MyDialog (3)

public void actionPerformed(ActionEvent e) {

Component aComponent = (Component) e.getSource();

if (aComponent instanceof JPasswordField) {

JPasswordField aPasswordField =

(JPasswordField) aComponent;

String passWordEntered = new

String(aPasswordField.getPassword());

if (passWordEntered.compareTo(ACTUAL_PASSWORD)

== MATCH)

loginSuccess(); // #4

else

loginFailed()

}

}

3/16/2017

Graphical user interfaces in Java 63

James Tam

Class MyDialog (4)

public void loginSuccess() {
JDialog success = new JDialog();
success.setTitle("Login successful!");
success.setSize(200,50);
success.setVisible(true);
cleanUp(success);

}

public void cleanUp(JDialog popup) {
try

Thread.sleep(3000);
catch (InterruptedException ex)

System.out.println("Program interrupted");
this.setVisible(false);
this.dispose();
popup.setVisible(false);
popup.dispose();
System.exit(0); // Dialog cannot end whole program

}

James Tam

Class MyDialog (5)

public void loginFailed()

{

JDialog failed = new JDialog();

failed.setTitle("Login failed!");

failed.setSize(200,50);

failed.setVisible(true);

cleanUp(failed);

}
public void cleanUp(JDialog popup) {

try
Thread.sleep(3000);

catch (InterruptedException ex)
System.out.println("Program interrupted");

this.setVisible(false);
this.dispose();
popup.setVisible(false);
popup.dispose();
System.exit(0); // Dialog cannot end whole program

}

3/16/2017

Graphical user interfaces in Java 64

James Tam

Dialog Boxes And “User-Friendly Design”

• Note: used sparingly dialog boxes can communicate important
information or to prevent unintentional and undesired actions.

James Tam

Dialog Boxes And “User-Friendly Design” (2)

• They interupt the regular use of the program so make sure
they are only used sparingly
– …they can easily be over/misused!)

3/16/2017

Graphical user interfaces in Java 65

James Tam

Dialogs Are Frequently Used Online

• Great! I’ve got the info that I need.

James Tam

Dialogs Are Frequently Used Online

• Hey I was reading that!

3/16/2017

Graphical user interfaces in Java 66

James Tam

• As previously shown this is not an uncommon occurrence

• The code to react to the event allows for easy access to the
control that raised the event.

Controls Affecting Other Controls

James Tam

Ways Of Accessing Other Controls

1. Via Java Swing containment
– Example to illustrate with JButton control:

– /home/219/examples/gui/6controlAffectControls

– JT’s $0.02

• Stylistically acceptable (of course!)

• Can be challenging to track down specific container/method

3/16/2017

Graphical user interfaces in Java 67

James Tam

Ways Of Accessing Other Controls (2)

2. Implementing the listener class as a nested inner class.
– (Recall that if one class is defined inside the definition of another class

that the inner class is within the scope of the outer class and as a
consequence it can access private attributes or methods).

– JT’s $0.02: take care that you don’t employ this technique too often
and/or to bypass encapsulation/information hiding.

public class MyFrame extends JFrame {
private JLabel a Label;
...

private class MyWindowListener extends extends

WindowAdapter {

public void windowClosing (WindowEvent e) {

aLabel.setText(“Shutting down”);

}

} // End definition for inner window listener class

} // End definition for outer frame class

James Tam

Ways Of Accessing Other Controls (3)

3. Adding the control as an attribute of the control that could
raise the event.
– Once you have access to the container then you can use accessor

methods to get a reference to all the GUI components contained within
that container.

– The previously mentioned example (#6) illustrated this:

public class MyFrame extends Jframe {

private JLabel aLabel1;

private JLabel aLabel2;

...

public JLabel getLabel1 () { return aLabel1; }

public JLabel getLabel2 () { return aLabel2; }

}

– JT’s $0.02:

• Replaces Java’s containment with a simpler has-a relation that you created

3/16/2017

Graphical user interfaces in Java 68

James Tam

Ways Of Accessing Other Controls (4)

– Note: adding one control as an attribute of another control need not be
limited only to actual ‘containers’ such as JFrame or JDialog

– Example (button event changes a label)

public class MyButton extends JButton {

private JLabel aLabel;

...

public Jlabel getLabel() { return(aLabel); }

}

public class MyButtonListener implements ActionListener {

public void actionPerformed(ActionEvent e) {

MyButton aButton = (MyButton) e.getSource();

JLabel aLabel = aButton.getLabel();

}

}

James Tam

Example Illustrating The Third Approach1 And Adding
Graphics To Controls

• Location of the complete example:
/home/219/examples/gui/13containment

1 Adding a control as an attribute of another control need not be limited only to
traditional container classes such as a JFrame

3/16/2017

Graphical user interfaces in Java 69

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

MyFrame aFrame = new MyFrame();

aFrame.setVisible(true);

}

}

James Tam

Class MyFrame

public class MyFrame extends JFrame

{

public static final String DEFAULT_LABEL_STRING = "Number

presses: ";

public static final int WIDTH = 700;

public static final int HEIGHT = 300;

private MyButton frameButton;

private MyButton labelButton;

private JLabel aLabel;

private int numPresses;

public MyFrame()

{

numPresses = 0;

initializeControls();

initializeFrame();

}

3/16/2017

Graphical user interfaces in Java 70

James Tam

Class MyFrame (2)

public void addControls() {

add(frameButton);

add(labelButton);

add(aLabel);

}

public JLabel getLabel() {

return(aLabel);

}

public int getNumPresses() {

return(numPresses);

}

public void incrementPresses() {

numPresses++;

}

James Tam

Class MyFrame (3)

public void initializeFrame()

{

setSize(WIDTH,HEIGHT);

setLayout(null);

addControls();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

3/16/2017

Graphical user interfaces in Java 71

James Tam

Class MyFrame (4)

public void initializeControls() {

ImageIcon anIcon = new ImageIcon("IconPic.gif");

frameButton = new MyButton("Affects

window",anIcon,this);

frameButton.setBounds(50,100,150,20);

frameButton.addActionListener

(new FrameButtonListener()); // Frame events only

labelButton = new MyButton("Affects label",anIcon,this);

labelButton.setBounds(250,100,150,20);

labelButton.addActionListener

(new LabelButtonListener()); // Label events only

aLabel = new JLabel(DEFAULT_LABEL_STRING +

Integer.toString(numPresses));

aLabel.setBounds(450,100,150,20);

}

}

No path provided:
location is the same
directory as the program

James Tam

Class MyButton

public class MyButton extends JButton

{

private Component aComponent;

public MyButton(String s,

ImageIcon pic,

Component aComponent)

{

super(s,pic);

this.aComponent = aComponent;

}

public Component getComponent()

{

return(aComponent);

}

}

Image reference passed
onto the appropriate
super class constructor

Each instance will have a
reference to a Java GUI
widget (label, frame etc.)

3/16/2017

Graphical user interfaces in Java 72

James Tam

Class To Change Label: LabelButtonListener

public class LabelButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent anEvent)

{

MyButton aButton = (MyButton) anEvent.getSource();

MyFrame aFrame = (MyFrame) aButton.getComponent();

aFrame.incrementPresses(); // Frame stores count

JLabel aLabel = aFrame.getLabel();

String s = MyFrame.DEFAULT_LABEL_STRING;

int currentPresses = aFrame.getNumPresses();

s = s + Integer.toString(currentPresses);

aLabel.setText(s); // Label displays current count

}

}

"Number presses: "

"Number presses: "<#>

James Tam

Class To Update Frame: FrameButtonListener

public class FrameButtonListener implements ActionListener

{

// Assumes screen resolution is at least 1024 x 768

private final static int MAX_X = 1023;

private final static int MAX_Y = 767;

// Time in milliseconds

private final int DELAY_TIME = 2500;

3/16/2017

Graphical user interfaces in Java 73

James Tam

Class To Update Frame: FrameButtonListener (2)

public void actionPerformed(ActionEvent anEvent)

{

MyButton aButton = (MyButton) anEvent.getSource();

JFrame aFrame = (JFrame) aButton.getComponent();

aFrame.setTitle("Don't you click me! I'm in a bad

mood!!!");

Random aGenerator = new Random();

// Control randomly “runs away” based on screen size

int x = aGenerator.nextInt(MAX_X);

int y = aGenerator.nextInt(MAX_Y);

aFrame.setLocation(x,y); // Move control to new location

aButton.setBackground(Color.RED); // Control is angry

pause();

aFrame.setTitle(""); // Angry text is gone

}

James Tam

Class To Update Frame: FrameButtonListener (3)

private void pause() // Give user time to note GUI changes

{

try

{

Thread.sleep(DELAY_TIME);

}

catch (InterruptedException ex)

{

ex.printStackTrace();

}

}

}

3/16/2017

Graphical user interfaces in Java 74

James Tam

User-Friendly Software (If There Is Time)

• In today’s world it’s not just sufficient to create software that
has implemented a given set of operations.

• If the person using the system cannot understand it or has
troubles using common functions then the software or
technology is useless.

• Reference course: If you’re interested in more information:

– http://pages.cpsc.ucalgary.ca/~tamj/2008/481W/index.html

James Tam

Not So Friendly Examples (If There Is Time)

http://pages.cpsc.ucalgary.ca/~tamj/2008/481W/index.html

3/16/2017

Graphical user interfaces in Java 75

James Tam

Some Rules (Of Thumb) For Designing Software (If
There Is Time)

• (The following list comes from Jakob Nielsen’s 10 usability
heuristics from the book “Usability Engineering”

1. Minimize the user’s memory load

2. Be consistent

3. Provide feedback

4. Provide clearly marked exits

5. Deal with errors in a helpful and
positive manner

James Tam

1. Minimize The User’s Memory Load (If There Is
Time)

• Computers are good at ‘remembering’ large amounts of
information.

• People are not so good remembering things.

slide 150

3/16/2017

Graphical user interfaces in Java 76

James Tam

1. Minimize The User’s Memory Load (If There Is
Time)

• To reduce the memory load of the user:

– Describe required the input format, show examples of valid input,
provide default inputs

• Examples:
Example 1:

Example 2:

James Tam

2. Be Consistent (If There Is Time)

• Consistency of effects
– Same words, commands, actions will always have the same effect in

equivalent situations

– Makes the system more predictable

– Reduces memory load

• Consistency of layout
– Allows experienced users to predict where things should be (matches

expectations)

3/16/2017

Graphical user interfaces in Java 77

James Tam

2. Be Consistent (If There Is Time)

• Consistency of language and graphics
– Same information/controls in same location on all screens / dialog boxes

forms follow boiler plate.

– Same visual appearance across the system (e.g. widgets).

Images courteously of

James Tam

James Tam

2. Be Consistent (If There Is Time)

This last

option

allows the

user to

proceed to

the next

question.

3/16/2017

Graphical user interfaces in Java 78

James Tam

3. Provide Feedback (If There Is Time)

• Letting the user know:
– What the program is currently doing: was the last command

understood, has it finished with it’s current task, what task is it currently
working on, how long will the current task take etc.

James Tam

3. Provide Feedback (If There Is Time)

• What is the program doing?

Outlook Express image

courteously of James Tam

3/16/2017

Graphical user interfaces in Java 79

James Tam

3. Provide Feedback (If There Is Time)

• The rather unfortunate effect on the (poor) recipient.

Outlook Express image

courteously of James Tam

James Tam

3. Provide Feedback (If There Is Time)

• In terms of this course, feedback is appropriate for instructions
that may not successfully execute
– what the program is doing (e.g., opening a file),

– what errors may have occurred (e.g., could not open file),

– and why (e.g., file “input.txt” could not be found)

• ...it’s not hard to do and not only provides useful updates with
the state of the program (“Is the program almost finished
yet?”) but also some clues as to how to avoid the error (e.g.,
make sure that the input file is in the specified directory).

• At this point your program should at least be able to provide
some rudimentary feedback
– E.g., if a negative value is entered for age then the program can remind

the user what is a valid value (the valid value should likely be shown to
the user as he or she enters the value):

age = int(input ("Enter age (0 – 114): "))

3/16/2017

Graphical user interfaces in Java 80

James Tam

4. Provide Clearly Marked Exits (If There Is Time)

• This should obviously mean that quitting the program should
be self-evident (although this is not always the case with all
programs!).

• In a more subtle fashion it refers to providing the user the
ability to reverse or take back past actions (e.g., the person
was just experimenting with the program so it shouldn’t be
‘locked’ into mode that is difficult to exit).

• Users should also be able to terminate lengthy operations as
needed.

James Tam

4. Provide Clearly Marked Exits (If There Is Time)

• This doesn’t just mean providing an exit from the program but
the ability to ‘exit’ (take back) the current action.
– Universal Undo/Redo

• e.g., <Ctrl>-<Z> and <Ctrl>-<Y>

– Progress indicator & Interrupt

– Length operations

Image: From the “HCI Hall of Shame”

3/16/2017

Graphical user interfaces in Java 81

James Tam

4. Provide Clearly Marked Exits (If There Is Time)

• Restoring defaults

– Getting back original settings

• Allows for defaults to
be quickly restored

• What option did I
change?

• What was the
original setting?

Image: Internet Explorer security settings curtesy ofJames Tam

James Tam

4. Provide Clearly Marked Exits (If There Is Time)

The user can skip or

‘exit’ any question

Image: An old CPSC 231 assignment curtesy of James Tam

3/16/2017

Graphical user interfaces in Java 82

James Tam

5. Deal With Errors In A Helpful And
Positive Manner (If There Is Time)

• (JT: with this the heuristic it states exactly what should be
done).

James Tam

Rules Of Thumb For Error Messages (If There Is Time)

1. Polite and non-intimidating
– Don’t make people feel stupid

– Try again, bonehead!

2. Understandable
– Error 25

3. Specific
– Cannot open this document

– Cannot open “chapter 5” because the application “Microsoft Word”
is not on your system

4. Helpful
– Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system. Open it with “WordPad” instead?

No

Not
AutoCAD Mechanical

So obvious it could
never happen?

Why?

Better

Even better: A
potentially helpful
suggestion

3/16/2017

Graphical user interfaces in Java 83

James Tam

Examples Of Bad Error Messages (If There Is Time)

Images: From the “HCI Hall of Shame”

James Tam

“HIT ANY KEY TO CONTINUE”

(If There Is Time)

3/16/2017

Graphical user interfaces in Java 84

James Tam

THE “Any Key”

Image: Curtesy of James Tam

(If There Is Time)

James Tam

I’d Rather Deal With The ‘Any’ Key (If There Is Time)

Picture courtesy of James Tam: An error message from a Dell desktop

computer

3/16/2017

Graphical user interfaces in Java 85

James Tam

After This Section You Should Now Know

• When and why are loops used in computer programs

• What is the difference between pre-test loops and post-test
loops

• How to trace the execution of pre-test loops

• How to properly write the code for a loop in a program

• What are nested loops and how do you trace their execution

• How to test loops

• Some rules of thumb for interaction design (if there is time)
1. Minimize the user’s memory load

2. Be consistent

3. Provide feedback

4. Provide clearly marked exits

5. Deal with errors in a helpful and
positive manner

References

• Books:
– “Java Swing” by Robert Eckstein, Marc Loy and Dave Wood (O’Reilly)

– “Absolute Java” (4th Edition) by Walter Savitch (Pearson)

– “Java: How to Program” (6th Edition) by H.M. Deitel and P.J. Deitel
(Pearson)

• Websites:
– Java API specifications: http://download.oracle.com/javase/7/docs/api/

– Java tutorials: http://download.oracle.com/javase/tutorial/uiswing/

– Java tutorial (layout):
http://docs.oracle.com/javase/tutorial/uiswing/layout/using.html

http://download.oracle.com/javase/7/docs/api/
http://download.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/layout/using.html

3/16/2017

Graphical user interfaces in Java 86

You Should Now Know

•The difference between traditional and event driven software

•How event-driven software works (registering and notifying
event listeners)

•How some basic Swing controls work

– Capturing common events for the controls such as a
button press

•How to layout components using layout managers and laying
them out manually using a coordinate system

James Tam

You Should Now Know (2)

• Some rules of thumb for interaction design (if there is time)
1. Minimize the user’s memory load

2. Be consistent

3. Provide feedback

4. Provide clearly marked exits

5. Deal with errors in a helpful and
positive manner

3/16/2017

Graphical user interfaces in Java 87

James Tam

Copyright Notice

• Unless otherwise specfied, all images were produced by the
author (James Tam).

