
CPSC 233: Introduction to Data Structures, Lists 1

James Tam

Lists

•Lists are a type of data structure (one of the simplest and most

commonly used).
- e.g., grades for a lecture can be stored in the form of a list

•List operations: creation, adding new elements, searching for

elements, removing existing elements, modifying elements,

displaying elements, sorting elements, deleting the entire list).

•Basic Java implementation of lists: array, linked list.

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation

(the name of the array is actually a reference to the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

CPSC 233: Introduction to Data Structures, Lists 2

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory

allocation (the name of the array is actually a reference to

the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

James Tam

Declaring Arrays

• Arrays in Java actually use a reference to the array so creating

an array requires two steps:
1) Declaring a reference to the array

2) Allocating the memory for the array

CPSC 233: Introduction to Data Structures, Lists 3

James Tam

Declaring A Reference To An Array

•Format:
// The number of pairs of square brackets specifies the number of

// dimensions.

<type> [] <array name>;

•Example:
int [] arr;

int [][] arr;

James Tam

Allocating Memory For An Array

•Format:
<array name> = new <array type> [<no elements>];

•Example:
arr = new int [SIZE];

arr = new int [ROW SIZE][COLUMN SIZE];

(Both steps can be combined together):

int [] arr = new int[SIZE];

CPSC 233: Introduction to Data Structures, Lists 4

James Tam

Arrays: An Example

•The name of the online example is can be found in the directory:
simpleArrayExample

public class Driver

{

public static void main (String [] args)

{

int i;

int len;

int [] arr;

James Tam

Arrays: An Example

Scanner in = new Scanner (System.in);

System.out.print("Enter the number of array elements: ");

len = in.nextInt ();

arr = new int [len];

System.out.println("Array Arr has " + arr.length + " elements.");

for (i = 0; i < arr.length; i++)

{

arr[i] = i;

System.out.println("Element[" + i + "]=" + arr[i]);

}

}

}

CPSC 233: Introduction to Data Structures, Lists 5

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation

(the name of the array is actually a reference to the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

- Null array references

- Array bounds checking

James Tam

Using A Null Reference

int [] arr = null;

arr[0] = 1; NullPointerException

CPSC 233: Introduction to Data Structures, Lists 6

James Tam

Exceeding The Array Bounds

int [] arr = new int [4];

int i;

for (i = 0; i <= 4; i++)

arr[i] = i;
ArrayIndexOutOfBoundsException

(when i = 4)

James Tam

Arrays Of Objects (References)

•Example:
public class Foo

{

private int num;

public void setNum (int aNum) { num = aNum; }s

}

•An array of objects is actually an array of references to objects
e.g., Foo [] arr = new Foo [4];

•The elements are initialized to null by default
arr[0].setNum(1); NullPointerException

CPSC 233: Introduction to Data Structures, Lists 7

James Tam

Arrays Of Objects (References)

•Since each list element is a reference (and references are set to

null by default in Java), before elements can be accessed an

object must be created for each element.

•For single references:
- Foo f; // No object exists yet

- f = new Foo (); // Creates an object and the reference ‘f’ refers to it.

•For arrays of references
Foo [] arr = new Foo [4]; // Creates array of references (each reference is

currently null)

int i;

for (i = 0; I < 4; i++)

arr[i] = new Foo(); // Each element will refer to a Foo object each time

// through the loop.

James Tam

A More Complex List Example

•This example will track a book collection.

•It will be implemented as an array and as a linked list.

•List operations implemented:
- Creation of the list

- Erasure of the entire list

- Display of the list (iterative and recursive implementation)

- Adding new elements

- Removing elements

•There will two example implementations: array, linked list

CPSC 233: Introduction to Data Structures, Lists 8

James Tam

List: Array Implementation

•The online example can be found in the directory (under the A2

directory): array

•Classes
- Book: tracks all the information associated with a particular book

- Manager: implements all the list operations

- Driver: starting execution point, calls methods of the Manager class in

order to change the list.

James Tam

Array Example: UML Diagram

Driver

Book

-name : String

+Book (newName :

String)

+getName(): String

+setName (newName :

String)

Manager

+MAX_ELEMENTS:int

-bookList:Book[]

-lastElement:int

+Manager ()

+display ()

+displayRecursive()

+doRecursiveDisplay

(curent:int)

+add ()

+eraseList ()

+remove ()

CPSC 233: Introduction to Data Structures, Lists 9

James Tam

Class Book

public class Book

{

private String name;

public Book (String aName) { setName(aName); }

public void setName (String aName) { name = aName; }

public String getName () { return name; }

}

James Tam

Class Manager

public class Manager

{

public final int MAX_ELEMENTS = 10;

private Book [] bookList;

private int lastElement;

public Manager ()

{

// Code to be described later

}

CPSC 233: Introduction to Data Structures, Lists 10

James Tam

Class Manager (2)

public void display()

{

// Code to be described later

}

public void displayRecursive ()

{

// Code to be described later

}

private void doRecursiveDisplay (int current)

{

// Code to be described later

}

James Tam

Class Manager (3)

public void add ()

{

// Code to be described later

}

public void eraseList ()

{

// Code to be described later

}

public void remove ()

{

// Code to be described later

}

}

CPSC 233: Introduction to Data Structures, Lists 11

James Tam

Driver Class

public class Driver

{

public static void main (String [] args)

{

Manager aManager = new Manager();

// Display: Empty listt

System.out.println("Part I: display empty list");

aManager.display();

System.out.println();

// Destroy list

System.out.println("Part II: erasing the entire list and displaying the empty

list");

aManager.eraseList();

aManager.display();

etc.

}

James Tam

List Operations: Arrays (Display)

•Unless it can be guaranteed that the list will always be full

(unlikely) then some mechanism for determining that the end of

the list has been reached is needed.

•If list elements cannot take on certain values then unoccupied

list elements can be ‘marked’ with an invalid value.

•Example: grades (simple array elements)

100

75

65

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

0

80

-1

-1

-1

CPSC 233: Introduction to Data Structures, Lists 12

James Tam

List Operations: Arrays (Display: 2)

•If list elements can’t be marked then a special variable (“last”

index) can be used to mark the last occupied element (works

with an array of simple types or an array of more complex types

like objects).

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

lastOccupiedElement = 4

12

33

77

1

123

-1

-1

-1

James Tam

List Operations: Arrays (Creation)

•Simply declare an array variable
array name> = new <array type> [<no elements>];

•Constructor
// Call in the Driver

Manager aManager = new Manager();

// In the Manager class

public Manager ()

{

bookList = new Book[MAX_ELEMENTS];

int i;

for (i = 0; i < MAX_ELEMENTS; i++)

bookList[i] = null;

lastElement = -1;

}

CPSC 233: Introduction to Data Structures, Lists 13

James Tam

List Operations: Arrays (Insertion At End)

•Insertion at the end.
- Some mechanism is needed to either find or keep track of the last occupied

element.

Bob

Mary

Alice Last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Increment last (new index of last element)Kayla

Insert: Kayla

James Tam

List Operations: Arrays (Insertion At End: 2)

•Driver class
aManager.add();

aManager.add();

•Manager class

public void add ()

{

String newName;

Scanner in;

CPSC 233: Introduction to Data Structures, Lists 14

James Tam

List Operations: Arrays (Insertion At End: 3)

if ((lastElement+1) < MAX_ELEMENTS)

{

System.out.print("Enter a title for the book: ");

in = new Scanner (System.in);

newName = in.nextLine ();

lastElement++;

bookList[lastElement] = new Book(newName);

}

else

{

System.out.print("Cannot add new element: ");

System.out.println("List already has " + MAX_ELEMENTS + " elements.");

}

} // End of add

James Tam

List Operations: Arrays (In Order Insertion)

•In order insertion.
- Some mechanism is needed to find the insertion point (search).

- Elements may need to be shifted.

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

CPSC 233: Introduction to Data Structures, Lists 15

James Tam

List Operations: Display List

•Driver Class
aManager.display();

•Manager Class
public void display()

{

int i;

System.out.println("Displaying list");

if (lastElement <= -1)

System.out.println("\tList is empty");

for (i = 0; i <= lastElement; i++)

{

System.out.println("\tTitle No. " + (i+1) + ": "+ bookList[i].getName());

}

}

James Tam

List Operations: Alternative Display List

•Driver class
aManager.displayRecursive();

•Manager class
public void displayRecursive ()

{

if (lastElement <= -1)

{

System.out.println("\tList is empty");

}

else

{

final int FIRST = 0;

System.out.println("Displaying list");

doRecursiveDisplay(FIRST);

}

}

Not necessary for A2

because it involves

recursion

CPSC 233: Introduction to Data Structures, Lists 16

James Tam

List Operations: Alternative Display List (2)

private void doRecursiveDisplay (int current)

{

if (current <= lastElement)

{

System.out.println("\tTitle No. " + (current+1) + ": "+

bookList[current].getName());

current++;

doRecursiveDisplay(current);

}

}

James Tam

List Operations: Erasure Of Entire List

•Driver Class
aManager.eraseList();

•Manager Class
public void eraseList ()

{

// Assignment below not needed, nor is there any need in Java

// to manually delete each element.

// bookList = null;

lastElement = -1;

}

CPSC 233: Introduction to Data Structures, Lists 17

James Tam

List Operations: Arrays (More On Destroying The
Entire List)

•Recall that Java employs automatic garbage collection.

•Setting the reference to the array to null will eventually allow

the array to be garbage collected.
<array name> = null;

•Note: many languages do not employ automatic garbage

collection and in those cases, either the entire array or each

element must be manually de-allocated in memory.

James Tam

Memory Leak

•A technical term for programs that don’t free up dynamically

allocated memory.

•It can be serious problem because it may result in a drastic

slowdown of a program.

CPSC 233: Introduction to Data Structures, Lists 18

James Tam

List Operations: Arrays (Removing Last Element)

•Driver:

aManager.remove();

•Manager:

public void remove ()

{

if (lastElement > -1)

{

lastElement--;

System.out.println("Last element removed from list.");

}

else

System.out.println("List is already empty: Nothing to remove");

}

James Tam

List Operations: Arrays (Search & Removing
Elements)

•A search is needed to find the removal point.

•Depending upon the index of the element to be deleted, other

elements may need to be shifted.

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

CPSC 233: Introduction to Data Structures, Lists 19

James Tam

Lists: Array Implementation (Summary)

•Advantage:
- Arrays are simple and easy to use

- The array implementation of a list may be completed faster

•Disadvantage:
- Unless the programming language has arrays that automatically resize

(grow and shrink as needed) then using an array is often wasteful.
•The number of elements created is often more than what’s needed

- Insertions and deletions of elements may be slow and inefficient: first

element added/removed many shifts may be required, there are many

elements that must be shifted, each element requires a great deal of

resources to stores.

