
3/21/2017

Administrative and course introduction 1

VBA (Visual Basic For Applications)
Programming Part II

• Objects
• Named constants
• Collections
• Nesting
• Useful VBA functions
• Linking Office applications

Real-World Objects

• You are of course familiar with objects in the everyday world.

– These are physical entities

• Each object is described by its properties (information)

• Each object can have a set of operations associated with it
(actions)

3/21/2017

Administrative and course introduction 2

VBA OBject

• Similar to everyday objects VBA-Objects have properties and
actions
– Properties: information that describe the object

• E.g., the name of a document, size of the document, date modified etc.

– Capabilities: actions that can be performed (sometimes referred to as
‘methods’ or ‘functions’)

• E.g., save, print, spell check etc.

Common VBA Objects

• Application: the MS-Office program running (for CPSC 203
it will always be MS-Word)

• ActiveDocument

• Selection

• When enter one of these keywords in the editor followed by
the ‘dot’ you can see more information.

Take advantage of the benefits:
1. The list of properties and methods is a

useful reminder if you can’t remember
the name

2. If you don’t see the pull down then this is
clue that you entered the wrong name
for the object

3/21/2017

Administrative and course introduction 3

Example: What Are The Three Objects

• Application:
•MS-Word

• Active/current
Document:

•“tamj template”

• Selection
•“Foo!”

Using Pre-Built Capabilities/Properties Of Objects

• Format:
<Object name>.<method or attribute name>

• Example:
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

3/21/2017

Administrative and course introduction 4

Properties Vs. Methods/Functions

• Recall
– Property: information about an object

– Method: capabilities of an object (possible actions)

Property:
current cell

Using the
‘average()’
function

Properties Vs. Methods: Appearance

Methods

Property

• Similar to functions in MS-Excel some object’s methods may
require an argument or arguments

• Examples
• ActiveDocument.CountNumberedItems
• ActiveDocument.Save

• ActiveDocument.SaveAs2("<name>")
Argument: New name of
document needed

No argument
required

3/21/2017

Administrative and course introduction 5

The Application Object

• As mentioned this object is the VBA application running e.g.
MS-Word

• Program illustrating an example usage:
1applicationObject.docm
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

The ActiveDocument Object

• Quick recap: although you may have many documents open,
the ‘active document’ is the document that you are currently
working with:

– Because it may be easy to confuse documents it’s best to only have a
single Word document open when writing a VBA program.

The active
document

3/21/2017

Administrative and course introduction 6

Attributes Of The ActiveDocument Object

Application: the application/program associated with the document (useful if
a VBA macro is linking several applications): next slide

Content: the data (text) of the currently active document (needed if you want to
perform a text search ‘Find’ in a VBA program).

Name: the name of the current document (useful for determining the active
document if multiple documents are currently open): next slide

Path: the save location of the active document e.g. C:\Temp\ :next slide

FullName: the name and save location of the current document :next slide

HasPassword: true/false that document is password protected: :next slide

Selection: the current select text in the active document (may be empty)

SpellingChecked: true/false that has been spell checked since document was
last edited: :next slide

SpellingErrors.Count: the number of typographical errors

Note: Information for these attributes can be viewed by passing the information
as a parameter to a message box
e.g., MsgBox (ActiveDocument.<Attribute Name>)

Example Of Accessing Attributes

• Program illustrating an example usage:
2activeDocumentAttributes.docm

Sub activeDocumentAttributes()

MsgBox (ActiveDocument.Application)

MsgBox (ActiveDocument.Name)

MsgBox (ActiveDocument.Path)

MsgBox (ActiveDocument.FullName)

MsgBox ("Spell checked? " & _

ActiveDocument.SpellingChecked)

MsgBox ("Password protected? " & _

ActiveDocument.HasPassword)

MsgBox ("# typos=" & ActiveDocument.SpellingErrors.Count)

End Sub

3/21/2017

Administrative and course introduction 7

Some Methods Of The ActiveDocument Object

Checkspelling: exactly as it sounds: next slide

Close: closes the active document (different options available)

CountNumberedItems: number of bulleted and numbered elements: next
slide

DeleteAllComments: removes comments from the current document :
next slide

Printout: prints current active document on the default printer : next slide

Save: saves the current document under the same name: next slide

SaveAs2: saves the current document under a different name: : next slide

Select: select some text in the active document

SendMail(): sends an email using MS-Outlook, the currently active
document becomes a file attachment

Example Of Using Methods

• Program illustrating an example usage:
3activeDocumentMethods.docm

Sub activeDocumentAttributes()

ActiveDocument.CheckSpelling

MsgBox (ActiveDocument.CountNumberedItems)

MsgBox (ActiveDocument.DeleteAllComments)

ActiveDocument.PrintOut

ActiveDocument.Save

ActiveDocument.SaveAs2 ("Copy")

End Sub

3/21/2017

Administrative and course introduction 8

ActiveDocument.SendMail()

• Runs the default email program

• The active document automatically becomes an attachment

• Subject line = name of document

• (For anything more ‘fancy’ you should use VBA to create and
access an MS-Outlook object)

“Finding” Things In A Document

• It can be done in different ways

• Example (common) ‘Find’ is an object that is part of the
‘Selection’ object in a document.
– JT’s note: although it may appear to be confusing at first it doesn’t mean

that the find (or find and replace) requires text to be selected.

– Making ‘Find’ a part of ‘Selection’ was merely a design decision on
the part of Microsoft.

• Example (alternative is JT’s preferred approach) ‘Find’ is an
object that is part of the ‘Content’ object of the
‘ActiveDocument’

– ActiveDocument.Content.Find

– More details coming up...
One source of information:
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

3/21/2017

Administrative and course introduction 9

Single Replacement

• Word document containing the macro:
4simpleFind.docm
sub simpleFind()

ActiveDocument.Content.Find.Execute
FindText:="tamj",ReplaceWith:="tam"

end Sub

'The instruction can be broken into two lines without causing

'An error by using an underscore as a connector

ActiveDocument.Content.Find.Execute
FindText:="tamj", _

ReplaceWith:="tam"

Background for example:
• My old email address (still works):

tamj@cpsc.ucalgary.ca
• My new email address:

tam@ucalgary.ca
• Incorrect variant:

tamj@ucalgary.ca

More Complex Find And Replace

• Word document containing the macro:
findReplaceAllCaseSensitive.docm

Sub findReplaceAllCaseSensitive()

ActiveDocument.Content.Find.Execute FindText:="tamj", _

ReplaceWith:="tam", Replace:=wdReplaceAll, _

MatchCase:=True

End Sub

Before After

mailto:tamj@cpsc.ucalgary.ca
mailto:tam@ucalgary.ca

3/21/2017

Administrative and course introduction 10

With, End With

• For ‘deep’ commands that require many levels of ‘dots’, the ‘With’, ‘End With’
can be a useful abbreviation.

• Example

With ActiveDocument.Content.Find

.Text = "tamj"

Equivalent to (if between the ‘with’ and the ‘end with’:

ActiveDocument.Content.Find.Text = "tamj"

• Previous example, the ‘Find’ employing ‘With’, ‘End With’:

• Also the search and replacement text are specified separately to shorten the ‘execute’
(the “ActiveDocument.Content.Find” listed once)

With ActiveDocument.Content.Find

.Text = "tamj"

.Replacement.Text = "tam"

.Execute MatchCase:=True, Replace:=wdReplaceAll

End With

‘Find text’ and
‘replacement text’
moved here to
simplify the

‘.execute’

ActiveDocument.Content.Find
.Execute

Find And Replace

• It’s not just limited to looking up text.

• Font effects e.g., bold, italic etc. can also be ‘found’ and
changed.

3/21/2017

Administrative and course introduction 11

Finding And Replacing Bold Font

• Word document containing the macro: 5findBold.docm
'Removes all bold text

Sub findBold()

With ActiveDocument.Content.Find

.Font.Bold = True

With .Replacement

.Font.Bold = False

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

Finding/Replacing Formatting Styles

• You may already have a set of pre-created formatting styles
defined in MS-Word.

• You can redefine the characteristic of a style if you wish.

• Assume for this example that you wish to retain all existing
styles and not change their characteristics.

• But you want to replace all instances of one style with another
style e.g., all text that is ‘normal’ is to become ‘TamFont’

• ‘Find’ can be used to search (and replace) instances of a
formatting style.

3/21/2017

Administrative and course introduction 12

Finding/Replacing Formatting Styles (2)

• Word document containing the macro:
6findReplaceStyle.docm
Sub findReplaceStyle()

With ActiveDocument.Content.Find

.Style = "Normal"

With .Replacement

.Style = "TamFont"

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

BEFORE AFTER

‘Normal’
style
becomes
‘TamFont
’

Counting The Number Of Occurrences Of A Word

• Example applications:

– Evaluating resumes by matching skills sought vs. skills listed by the
applicant.

– Ranking the relevance of a paper vs. a search topic by the number of
times that the topic is mentioned.

• Complete Word document containing the macro: 7counting
occurences.docm

3/21/2017

Administrative and course introduction 13

Example: Counting Occurrences

Sub countingOccurences()
Dim count As Long
Dim searchWord As String
count = 0
searchWord = InputBox("Word to search for")

' Exact match (assignment)
With ActiveDocument.Content.Find

Do While .Execute(FindText:=searchWord, Forward:=True, _
MatchWholeWord:=True) = True
count = count + 1

Loop
End With
MsgBox ("Exact matches " & count)

End Sub

Review: Lookup Tables (For Constants)

• Excel: Lookup tables are used to define values that do not
typically change but are referred to in multiple parts of a
spreadsheet.

3/21/2017

Administrative and course introduction 14

Named Constants

• They are similar to variables: a memory location that’s been
given a name.

• Unlike variables their contents cannot change.

• The naming conventions for choosing variable names generally
apply to constants but constants should be all UPPER CASE.
(You can separate multiple words with an underscore).
–This isn’t a usual Visual Basic convention but since it’s very common with

most other languages so you will be required to follow it for this class.

• Example CONST PI = 3.14

–PI = Named constant, 3.14 = Unnamed constant

• They are capitalized so the reader of the program can quickly
distinguish them from variables.

Declaring Named Constants

• Format:

Const <Name of constant> = <Expression>1

JT: it’s preceded by the keyword ‘const’ to indicate that it is a

constant/unchanging.

• Example:

Sub ConstantExample()

Const PI = 3.14

End Sub

1 The expression can be any mathematical operation but can’t be the result of a function call

3/21/2017

Administrative and course introduction 15

Why Use Named Constants

• They can make your programs easier to read and understand

• Example:
Income = 315 * 80

Vs.
Income = WORKING_DAYS_PER_YEAR * DAILY_PAY

No 

Yes 

Predefined Constants: MS-Word

• Microsoft uses their owning naming convention for predefined
named constants.

• Example:
– wdPromptToSaveChanges

• Usage:
– ActiveDocument.Close(wdPromptToSaveChanges)

3/21/2017

Administrative and course introduction 16

Closing Documents

• Default action when closing a MS-Word document that has
been modified (prompt)

• VBA code to close a document in this fashion:
ActiveDocument.Close (wdPromptToSaveChanges)

Pre-defined constant

More Pre-Defined Constants: Closing Documents

• ActiveDocument.Close method

• Word document containing the macro:
“8closingActions.docm”

Sub ClosingActions()

ActiveDocument.Close (<Constant for closing action>)

End Sub

'Choose one constant
wdPromptToSaveChanges
wdDoNotSaveChanges
wdSaveChanges

3/21/2017

Administrative and course introduction 17

Formatting An Entire Document

• You first need to specify the document or part of a document
to be formatted

• One way is through the ‘ActiveDocument’ object

– (An alternative to be covered later is to only format the currently
selected text via the ‘Selection’ object).

• Then choose the ‘Select’ method of that document.
– Review: it’s a method and not a property because it applies an action:

select = selecting the text of the entire document

Formatting Text (Entire Active Document): An
Example

• Suppose you want to format a document in the following way

• Entire document
– Font = Calibri

3/21/2017

Administrative and course introduction 18

Formatting: Entire Document

• As mentioned the entire document can be selected.

• Now for the ‘selected text’ (in this case it’s the whole
document) access the ‘Font’ property and the ‘Name’
property of that font and give it the desired name.

• Word document containing the macro:
9formattingEntireDocument.docm
Sub formattingEntireDocument()

ActiveDocument.Select

Selection.Font.Name = "Calibri"

End Sub

ActiveDocument.Select

Selection.Font.Name = "Calibri"

The Selection Object

• This is the currently select text in a document.

– It may be empty (nothing selected)

3/21/2017

Administrative and course introduction 19

Some Attributes Of The Selection Object

Font.Name: specify the type (name) of font

Font.Size: specify the font size

Font.ColorIndex: specify the color of the font

Font.UnderLine: specify the type of underlining to be applied
(or to remove underlining)

Font.Bold: allows bolding to change (toggle or set)

Similar to how the attributes of ActiveDocument Object affect
only the currently active document these attributes only take
effect on the currently selected text (if there’s any).

Using The Selection Object Attributes

• Name of the Word document containing the program:
10selectionAttributes.docm

Sub selectionObjectAttributes()

Selection.Font.Name = "Wingdings" 'Must be quoted

Selection.Font.Size = 36

Selection.Font.ColorIndex = wdBlue

' Selection.Font.Underline = <Constant for underlining>

' wdUnderlineNone, wdUnderlineSingle

' e.g. Selection.Font = wdUnderlineSingle

' Bolding options

Selection.Font.Bold = wdToggle ' On/off

Selection.Font.Bold = True ' Turn on (or off)

End Sub

3/21/2017

Administrative and course introduction 20

Seeing Color (And Under Line Options)

• Use the ‘auto complete’ feature of VBA to view the options

Some Methods Of The Selection Object

ClearFormatting: removes all formatting effects (e.g. bold, italics)

TypeText: insert the text specified in the VBA program

Delete: deletes any selected text

EndKey: move the cursor to the end of the document (covered in a
later and in a large example)

HomeKey: move the cursor to the start of the document (covered in a
later and in a large example)

InsertFile: replace selection with text from the specified file

(covered in a later example)

Similar to how the method of ActiveDocument Object affect only
the currently active document these attributes only take effect on the
currently selected text (if there’s any).

3/21/2017

Administrative and course introduction 21

Using Simple Methods Of The Selection Object

• Name of the Word document containing the program:
11selectionMethod.docm

• Try running it with and without some text selected

Sub selectionObjectMethod()

Selection.ClearFormatting

Selection.TypeText ("My new replacement text")

End Sub

Writing Text To Start/End

• Name of the Word document containing the program:
12selectionHomeEndKey.docm
– HomeKey docs: https://msdn.microsoft.com/en-us/library/office/ff192384.aspx

– EndKey docs: https://msdn.microsoft.com/en-us/library/office/ff195593.aspx

Sub selectionHomeEndKey()

Const SONG_TITLE = "You're not here"

Const SONG_LYRICIST = "Akira Yamaoka"

Selection.HomeKey Unit:=wdStory

Selection.TypeText (SONG_TITLE)

Selection.EndKey Unit:=wdStory

Selection.TypeText (SONG_LYRICIST)

End Sub

3/21/2017

Administrative and course introduction 22

The Previous VBA Program: Example Of ‘Proximity’

• Related parts of

the program are

grouped

together

• Each part is

separated with

whitespace

Inserting Text

• Example files (must all be in the same folder)

Text input1

13input1.docx

Text input2

13input2.rtf

Text input3

13input3.txt

Word docm
document (VBA
program)

3/21/2017

Administrative and course introduction 23

Automatically Inserting Text Into A Word Document

• Name of the Word document containing the program:
13selectionInsertingText.docm

Sub insertingText()

Selection.InsertFile ("13input1.docx")

Selection.InsertFile ("13input2.rtf")

Selection.InsertFile ("13input3.txt")

End Sub

The Selection Object again

• With a approaches if no text was selected then the program
would produce no visible effect.
Sub SelectedFontChange()

Selection.Font.Bold = wdToggle

End

• The program could automatically select text for you
“expanding” the selection.

Sub AutoSelectedFontChange()

Selection.Expand

Selection.Font.Bold = wdToggle

End Sub

Before After

3/21/2017

Administrative and course introduction 24

Constants For The Selection Object

Name of constant Meaning of constant

wdSelectionIP No text selected

wdSelectionNormal Text (e.g., word, sentence) has

been selected

wdSelectionShape A graphical shape (e.g., circle,

text book) has been selected

The Selection Object And A Practical Application
Of Branching

• An example application of branching: check if a selection has
been made and only apply the selection if that is the case.
– Checking if a condition is true

• Word document containing the macro:
“14selectionExample.docm”
Sub checkSelection()

If Selection.Type = wdSelectionIP Then

MsgBox ("No text selected, nothing to change")

Else

Selection.Font.Bold = wdToggle 'wdToggle, constant

End If

End Sub

3/21/2017

Administrative and course introduction 25

Application Branching: Marking Program (If There Is
Time)

• Word document containing the macro: “15Marking
program.docm”

• Synopsis:
– The program spells checks the document

• Assume each document includes the name of the person in the file name

– If the number of errors meets a cut-off value then it’s a ‘fail’

– Otherwise it’s a pass

– The feedback is ‘written’ to the beginning of the document using a
specific font and several font effects in order to stand out

• The message is customized with the person’s name at the beginning of the
feedback

Marking Program

Sub MarkingForSpelling()
Dim totalTypos As Integer
Const MAX_TYPOS = 30
Dim currentDocument As String
Dim feedback As String

'Get Name of current document
currentDocument = ActiveDocument.Name

'Tally the number of typos
totalTypos = ActiveDocument.SpellingErrors.Count

'Feedback is prefaced by student(document) name
feedback = currentDocument & " marking feedback..."

3/21/2017

Administrative and course introduction 26

Marking Program (2)

' HomeKey move to the home position (start of document)
Selection.HomeKey Unit:=wdStory

'Recall: before this feedback just = document name and
'an indication that feedback is coming
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical errors:
Fail"

Else
feedback = feedback & ": Pass"

End If

' Chr(11) adds a newline (enter) to the end of feedback
feedback = feedback & Chr(11) & Chr(11)

' Alternative use the constant vbCr (VB cursor return)

Marking Program (3)

' Font effects to make the feedback stand out
Selection.Font.ColorIndex = wdRed
Selection.Font.Size = 16
Selection.Font.Name = "Times New Roman"

' Write feedback into the document
Selection.TypeText (feedback)

End Sub

3/21/2017

Administrative and course introduction 27

Collection

• An object that consists of other objects
– Real World example: a book consists of pages, a library consists of books

• Example: The Documents collection will allow access to the
documents that have been opened.

• Access to a collection rather than the individual objects may be
time-saving shortcut.

– Instead of manually closing all open documents this can be done in one
instruction:

Documents.close

Types Of Collections

• Some attributes of a document that return a collection.
• Documents: access to all the currently open documents

• Shapes: access to MS-Word shapes in a document (rectangles, circles etc.)

• InlineShapes: access to images inserted into a Word document

• Tables: access to all tables in a document

–E.g., ActiveDocument.Tables –accesses all the tables in your document

– ActiveDocument.Tables(1)–access to the first table in a document.

• Windows: briefly introduced at the start of this section of notes

3/21/2017

Administrative and course introduction 28

Documents Collection For Printing: Multiple

• Printing all the documents currently open in MS-Word.
– Take care that you don’t run this macro if you have many documents

open and/or they are very large!

– Word document containing the macro example:
“16printMultipleDocumentst.docm”

Sub PrintDocumentsCollection()

Dim numDocuments As Integer

Dim count As Integer

numDocuments = Documents.count

count = 1

Do While (count <= numDocuments)

Documents.Item(count).PrintOut

count = count + 1

Loop

End Sub

Learning: another
practical application
of looping e.g.,
automatically open
multiple documents,
make changes, print
and save them
without user action
needed

Accessing Shapes And Images (If There Is Time)

• (VBA specific)

– Shapes (basic shapes that are drawn by Word)

– InlineShapes (images that are created externally and inserted into
Word)

• Both collections accessed via the ActiveDocument object:
– ActiveDocument.Shapes: access to all the shapes in the currently

active Word document

•ActiveDocument.Shapes(<index>): access to shape #i in the document

– ActiveDocument.InlineShapes: access to all the images in the
currently active Word document

•ActiveDocument.InlineShapes(<index>): access to image #i in the
document

3/21/2017

Administrative and course introduction 29

Example: Accessing Shapes And Images

Word document containing the complete macro:
“17accessingImagesFigures.docm”

Dim numImages As Integer
Dim numShapes As Integer

numImages = ActiveDocument.InlineShapes.Count
numShapes = ActiveDocument.Shapes.Count

MsgBox ("Images=" & numImages)
MsgBox ("Simple shapes=" & numShapes)

Example: Accessing Shapes And Images (2)

' Checks expected # images and alters first & third
If (numImages = 4) Then

ActiveDocument.InlineShapes(1).Height = _
ActiveDocument.InlineShapes(1).Height * 2

ActiveDocument.InlineShapes(3).Height = _
ActiveDocument.InlineShapes(3).Height * 2

End If

' Checks expected # shapes, alters 2nd & 6th

' Deletes the first shape
If (numShapes = 6) Then

ActiveDocument.Shapes(2).Width = _
ActiveDocument.Shapes(2).Width * 4

ActiveDocument.Shapes(6).Fill.ForeColor = vbRed
ActiveDocument.Shapes(1).Delete

End If

3/21/2017

Administrative and course introduction 30

Nesting

• Nesting refers to an item that is “inside of” (or “nested in”)
some other item.

• Recall from ‘spreadsheets’ nesting refers to an ‘IF-function’
that is inside of another ‘IF-function’
– Example (assume that the respondent previously indicated that his or her

birthplace was an Alberta city)
– Select the AB city in which you were born

1. Airdrie

2. Calgary

3. Edmonton

…

• Selecting Airdrie excludes the possibility of selecting Calgary

• Cities listed later are ‘nested’ in earlier selections)

• Nesting in programming (VBA) refers to IF-branches and Do-
While loops that are inside of each other

Nesting

• Nesting: one structure is contained within another

– Nested branches:
If (Boolean) then

If (Boolean) then

...

End If

End if

• Branches and loops can be nested within each other
Do while (Boolean) If (Boolean) then

If (Boolean) then Do while (Boolean)

... ...

End if Loop

Loop

Do while (Boolean)

Do while (Boolean)

...

Loop

Loop

3/21/2017

Administrative and course introduction 31

Recognizing When Nesting Is Needed

• Scenario 1: A second question is asked if a first question
answers true:
– Example: If it’s true the applicant is a Canadian citizen, then ask for the

person’s income (checking if eligible for social assistance).

– Type of nesting: an IF-branch nested inside of another IF-branch

If (Boolean) then

If (Boolean) then

...

End If

End if

Nested IFs

• Word document containing the example:
18nestingIFinsideIF.docm
Sub nestedCase1()

Dim country As String

Dim income As Long

Const INCOME_CUTOFF = 24000

country = InputBox("What is your country of citizenship?")

If (country = "Canada") Then

income = InputBox("What is your income $")

If (income <= INCOME_CUTOFF) Then

MsgBox ("Citizenship: " & country & "; " & _

"Income $" & income & _

": eligible for assistance")

End If

End If

End Sub

3/21/2017

Administrative and course introduction 32

Recognizing When Nesting Is Needed

• Scenario 2A: As long some condition is met a question will be
asked.
– Example: While the user entered an invalid value for age (too high or too

low) then if the age is too low an error message will be displayed.

– Type of nesting: an IF-branch nested inside of a Do-While loop

Do While

If (Boolean) then

...

End If

Loop

IF Nested Inside A Do-While

• Word document containing the example:
19nestingIFinsideWHILE.docm
Sub nestedCase2A()

Dim age As Long

Const MIN_AGE = 1

Const MAX_AGE = 118

age = InputBox("How old are you (1-118)?")

Do While ((age < MIN_AGE) Or (age > MAX_AGE))

If (age < MIN_AGE) Then

MsgBox ("Age cannot be lower than " & _

MIN_AGE & " years")

End If

age = InputBox("How old are you (1-118)?")

Loop

MsgBox ("Age=" & age & " is age-okay")

End Sub

3/21/2017

Administrative and course introduction 33

Recognizing When Nesting Is Needed

• Scenario 2B: If a question answers true then check if a process
should be repeated.
– Example: If the user specified the country of residence as Canada then

repeatedly prompt for the province of residence as long as the province
is not valid.

– Type of nesting: a Do-While loop nested inside of an IF-branch

If (Boolean) then

Do While

...

Loop

End If

Do-While Nested Inside An IF

• Word document containing the example:
20nestingWHILEinsideIF.docm

Dim country As String

Dim province As String

country = InputBox("What is your country of citizenship?")

If (country = "Canada") Then

province = InputBox("What is your province of " & _

"citizenship?")

Do While ((province <> "AB") And (province <> "BC"))

MsgBox ("Valid provinces: AB, BC")

province = InputBox("What is your province of" & _

" citizenship?")

Loop

End If

MsgBox ("Country: " & country & ", " & "Province: " & _

" province)

3/21/2017

Administrative and course introduction 34

Recognizing When Nesting Is Needed

• Scenario 3: While one process is repeated, repeat another
process.
– More specifically: for each step in the first process repeat the second

process from start to end

– Example: While the user indicates that he/she wants to calculate another
tax return prompt the user for income, while the income is invalid
repeatedly prompt for income.

– Type of nesting: a Do-While loop nested inside of an another Do-While
loop

Do While

Do While

...

Loop

Loop

Do-While Nested Inside Another Do-While

• Word document containing the example:
21nestingWHILEinsideWHILE.docm

Dim runAgain As String

Dim income As Long

Const MIN_INCOME = 0

runAgain = "yes"

Do While (runAgain = "yes")

MsgBox ("CALCULATING A TAX RETURN")

income = -1

Do While (income < MIN_INCOME)

income = InputBox("Income $")

Loop

runAgain = InputBox("To calculate another return" & _

" enter yes")

Loop

a

3/21/2017

Administrative and course introduction 35

Example: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?

Step #1 Completed: Now What?

• For each number in the sequence determine if it is odd or
even.

• This can be done with the modulo (remainder) operator: MOD
– An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and

yield a remainder or modulo of zero).

– If (counter MOD 2 = 0) then 'Even

– An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

• Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message

End Loop

– Determining whether a number is odd/even is a part of counting through
the sequence from 1 – 6, checking odd/even is nested within the loop

3/21/2017

Administrative and course introduction 36

Accessing Tables (If There Is Time)

• The tables in the currently active Word document can be made
through the ActiveDocument object:
– ActiveDocument.Tables: accesses the ‘tables’ collection (all the

tables in the document).

– ActiveDocument.Tables(<integer ‘i’>): accesses table # i in
the document

– ActiveDocument.Tables(1).Sort: sorts the first table in the
document (default is ascending order)

Simple Example: Sorting Three Tables

• Instructions needed for sorting 3 tables

ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

Before After

3/21/2017

Administrative and course introduction 37

Previous Example

• Critique of the previous approach: the program ‘worked’ for
the one document with3 tables but:
– What if there were more tables (cut and paste of the sort instruction is

wasteful)?

– What if the number of tables can change (i.e., user edits the document)

• Notice: The process of sorting just repeats the same action but
on a different table.
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

• Looping/repetition can be applied reduce the duplicated
statements

Revised Example: Sorting Tables With A Loop

Word document containing the complete macro:
“22sortingTables.docm”

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

MsgBox ("No tables to sort")

Else

CurrentTable = 1

Do While (CurrentTable <= NumTables)

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort

CurrentTable = CurrentTable + 1

Loop

End If

3/21/2017

Administrative and course introduction 38

Result: Sorting Tables

• Before

• After

More On Sort

• A handy parameter that can be used to configure how it runs.

• Format
Sort (<Boolean to Exclude header – True or False>)

• Example
– ActiveDocument.Tables(CurrentTable).Sort(True)

– Before

– After

3/21/2017

Administrative and course introduction 39

Second Sorting Example: Exclude Headers

• Document containing the macro:
“23sortingTablesExcludeHeader.docm”

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

' Don't bother sorting

MsgBox ("No tables to sort")

Else

CurrentTable = 1

Do While (CurrentTable <= NumTables)

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort (True)

CurrentTable = CurrentTable + 1

Loop

End If

Before

After

The DIR Function

• It can be used to go through all the documents in a folder (this
will be illustrated gradually in advanced examples but the first
one will be rudamentary)

• It can be used to go through the entire contents of a folder
including sub-folders and sub-sub folders (very advanced use:
well beyond the scope of the this course)

• Basic use: this function takes a location (e.g., C:\temp\) and a
filename as an argument and it determines if the file exists at
the specified location.

– If the file is found at this location then the function returns the name of
the file.

– If the file is not found at this location then the function returns an empty
string (zero length)

3/21/2017

Administrative and course introduction 40

Simple Use Of The DIR Function

• Word document containing the macro example:
24DIRFunctionSimple.docm

Dim location As String
Dim filename As String
Dim result As String
location = "C:\temp\" 'Always look here

filename = "Doc1.docx" 'C:\temp\Doc1.dox
result = Dir(location & filename)
MsgBox (result)

result = Dir(location & "*.docx") 'Any .docx in C:\temp\
MsgBox (result)

filename = InputBox("File name in C:\temp")
result = Dir(location & filename)
MsgBox (result)

Example: Using Dir To Check If File Exists (2)

• Word document containing the macro example:
25DIRFunctionIntermediate.docm

Sub openExistingDocument()

Dim filename As String

Dim checkIfExists As String

Dim last As Integer

filename = InputBox ("Enter the path and name of file to

open e.g., 'C:\temp\tam.docx'")

' Error case: nothing to open, user entered no info

If (filename = "") Then

ActiveDocument.ActiveWindow.Caption =

"Empty file name"

3/21/2017

Administrative and course introduction 41

Example: Using Dir To Check If File Exists (3)

' No error: non-empty info entered

Else

checkIfExists = Dir(filename)

If (Len(checkIfExists) = 0) Then

MsgBox ("File doesn't exist can't open")

Else

MsgBox ("File exists opening")

Documents.Open (filename)

End If

End If

End Sub

Practical Use Of Dir: Access Each File In A Directory

• Word document containing the macro example: 26loopFolder.docm

Sub loopFolder ()
Dim directoryPath As String
Dim currentFile As String
directoryPath = InputBox("Enter full path of search" & _

" folder e.g. C:\Temp\")
currentFile = Dir(directoryPath)
If (currentFile = "") Then

MsgBox ("No path to documents supplied")
End If
Do While (currentFile <> "")

MsgBox (currentFile) ' Display file name in popup
currentFile = Dir

Loop
End Sub

3/21/2017

Administrative and course introduction 42

Alternate Version: Access Only Word Documents

• Word document containing the macro example:
27loopWordFolder.docm

Sub loopWordFolder()
Dim directoryPath As String
Dim currentFile As String
directoryPath = InputBox("Enter full path of search" & _

“ folder")
currentFile = Dir(directoryPath & "*.doc*")
If (currentFile = "") Then

MsgBox ("No documents in the specified folder")
End If
Do While (currentFile <> "")

MsgBox (currentFile) ' Display file name in popup
currentFile = Dir ' Move onto next document in folder

Loop
End Sub

Applying Many Of The Previous Concepts In A Practical
Example & Linking Documents And (If There’s Time)

• As you are aware different programs serve different purposes:

– Database: storing and retrieving information

– Spreadsheet: performing calculations, displaying graphical views of
results

– Word processor: creating text documents with many features for
formatting and laying out text

• VBA allows the output of one program to become the input of
another program.
– Although this can be done ‘manually’ (reading the documents and typing

in changes) if the dataset is large this can be a tedious and error-prone
process

– VBA can be used to automate the process

3/21/2017

Administrative and course introduction 43

Example Problem

• Financial statements (monetary data) about many companies
can be stored in a spreadsheet where an analysis can be
performed e.g. does the company have enough $$$ on hand to
meet its financial commitments.

• This information can be read into a VBA program which can
further evaluate the data.

• The results can be presented in Word using the numerous text
formatting features to highlight pertinent financial
information.

• Names of the documents used in this example:
– FNCE.xlsx (contains the financial data: program input)

– 28spreadSheetAnalyzer.docm (contains the VBA program as well as
the presentation of results: program output)

Spread Sheet Analyzer

Sub spreadsheetAnalyzer()
Const MIN_INCOME = 250
Const MIN_RATIO = 25

Const PERCENT = 100
Dim company1 As String
Dim income1 As Long
Dim ratio1 As Long
Dim company2 As String
Dim income2 As Long
Dim ratio2 As Long
Dim company3 As String
Dim income3 As Long
Dim ratio3 As Long
Dim comment1 As String
Dim comment2 As String
Dim comment3 As String

TAMCO: 33%

HAL: Net income $250

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

3/21/2017

Administrative and course introduction 44

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

3/21/2017

Administrative and course introduction 45

Spread Sheet Analyzer (3)

' Get company names

company1 = excel.Range("A1").Value

company2 = excel.Range("A5").Value

company3 = excel.Range("A9").Value

' Get net income and ratio

income1 = excel.Range("C3").Value

ratio1 = excel.Range("D3").Value * PERCENT

income2 = excel.Range("C7").Value

ratio2 = excel.Range("D7").Value * PERCENT

income3 = excel.Range("C11").Value

ratio3 = excel.Range("D11").Value * PERCENT

' Move the selection to the top of the Word document

Selection.HomeKey Unit:=wdStory

Spread Sheet Analyzer (4): First Company

comment1 = company1 & ": "
If (income1 >= MIN_INCOME) Then

comment1 = comment1 & "Net income $" & income1
Selection.Font.Color = wdColorRed
Selection.TypeText (comment1)
If (ratio1 >= MIN_RATIO) Then

comment1 = ", " & ratio1 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
Selection.TypeText (vbCr)

Else
If (ratio1 >= MIN_RATIO) Then

comment1 = comment1 & ratio1 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
End If

TAMCO: 33%

3/21/2017

Administrative and course introduction 46

Spread Sheet Analyzer (5): Second Company

comment2 = company2 & ": "
If (income2 >= MIN_INCOME) Then

comment2 = comment2 & "Net income $" & income2
Selection.Font.Color = wdColorRed
Selection.TypeText (comment2)
If (ratio2 >= MIN_RATIO) Then

comment2 = ", " & ratio2 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
Selection.TypeText (vbCr)

Else
If (ratio2 >= MIN_RATIO) Then

comment2 = comment2 & ratio2 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
End If

HAL: Net income $250

Spread Sheet Analyzer (6): Third Company

comment3 = company3 & ": "
If (income3 >= MIN_INCOME) Then

comment3 = comment3 & "Net income $" & income3
Selection.Font.Color = wdColorRed
Selection.TypeText (comment3)
If (ratio3 >= MIN_RATIO) Then

comment3 = ", " & ratio3 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
Selection.TypeText (vbCr)

Else
If (ratio3 >= MIN_RATIO) Then

comment3 = comment3 & ratio3 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
End If

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

3/21/2017

Administrative and course introduction 47

Revised Marking Program (If There Is Time)s

• Word document containing the macro:
“29markAllFolderDocuments.docm”

Sub markAllFolderDocuments()

Const MAX_TYPOS = 1

Const LARGER_FONT = 14

Dim directoryPath As String

Dim currentFile As String

Dim totalTypos As Integer

Dim feedback As String

Revised Marking Program (2)

directoryPath = InputBox("Location and name of folder
containing assignments (e.g., C:\grades\")

currentFile = Dir(directoryPath & "*.doc*")

If (directoryPath = "") Then
MsgBox ("No Word documents in specified folder,

looking in default location C:\Temp\")
directoryPath = "C:\Temp\"

End If

3/21/2017

Administrative and course introduction 48

Revised Marking Program (3)

Do While (currentFile <> "")
Documents.Open (directoryPath & currentFile)
currentDocument = ActiveDocument.Name
totalTypos = ActiveDocument.SpellingErrors.Count
feedback = currentDocument & " marking feedback..."
Selection.HomeKey Unit:=wdStory
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical
errors: Fail"

Else
feedback = feedback & ": Pass"

End If
feedback = feedback & vbCr
Selection.Text = feedback
' Loop body continued on next page

e.g. Feedback for
“Typos.docx” = “Typos
marking feedback…”

e.g. Feedback for
“Typos.docx” =
“typos.doc marking
feedback...: Too many
typographical errors:
Fail”

Revised Marking Program (4)

' Loop body continued from previous page
With Selection.Font

.Bold = True

.Size = LARGER_FONT

.ColorIndex = wdRed
End With
ActiveDocument.Close (wdSaveChanges)
currentFile = Dir

Loop
End Sub

3/21/2017

Administrative and course introduction 49

After This Section You Should Now Know

• Objects
– Properties/attributes vs. methods

• Using common properties/attributes and methods of the
following objects
– Application

– ActiveDocument

– Selection

• What is a named constant, why use them (benefits)

• What is a predefined named constant and what are some
useful, commonly used predefined constants

• Naming conventions for constants

After This Section You Should Now Know (2)

• Collections

– What are they

– What is the advantage in using them

– Common examples found in Word documents

• Using common collections in VBA
– Documents

– Shapes

– InLineShapes

– Tables

– Windows

3/21/2017

Administrative and course introduction 50

After This Section You Should Now Know (3)

• Nesting:
– IF within an IF

– Do-While within an IF, IF within a Do-While

– A Do-While within a Do-While

– Writing and tracing/nested structures

– When to apply nesting

After This Section You Should Now Know (4)

• How to use the ‘Dir’ function to access a folder

– Using this function to step through all the documents or specific types of
documents in a folder

– Also includes using the ‘Len’ function to check the length of filename
and location path (String)

• Accessing other types of MS-Office programs with an VBA
program written for Word

3/21/2017

Administrative and course introduction 51

Copyright Notice

• Unless otherwise specified, all images were produced by the
author (James Tam).

