
3/31/2016

Linked lists in Java 1

Linked Lists

• A dynamically resizable, efficient
implementation of a list

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of this programs will not be in sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to understand the concepts and follow the examples
illustrating those concepts if you don’t do a little preparatory
work.

• Also the program code is more complex than most other
examples.

• For these reasons tracing the code in this section is more
challenging

3/31/2016

Linked lists in Java 2

James Tam

Lists

• Data that only includes one attribute or dimension

• Example data with one-dimension
–Tracking grades for a class

–Each cell contains the grade for a student i.e., grades[i]

– There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

James Tam

Array Implementation Of A List: Advantage

• Ease of use: arrays are a simple structure

3/31/2016

Linked lists in Java 3

James Tam

Array Implementation Of A List: Disadvantage (Waste)

• Some array implementations cannot be automatically resized
– E.g.,

int [] array = new int[10];

• Adding more elements requires the creation of a new array
and the copying of existing data into the new array
– E.g.
int [] bigger = new int[20];
int i; = 0;
while (i < array.length)
{

bigger[i] = array[i];
i++;

}

• That means that the array must be made larger than is typically
needed.

James Tam

Array Implementation Of A List: Disadvantage
(Inefficient)

• Inserting new elements to an ordered lists can be inefficient:
requires ‘shifting’ of elements

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

JT: If the size of each element is large
(e.g., array of objects and not an
array of references) then program
speed can be degraded

3/31/2016

Linked lists in Java 4

James Tam

Array Implementation Of A List: Disadvantage
(Inefficient)

• Similarly removing elements from an ordered lists can be
inefficient: requires ‘shifting’ of elements

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

James Tam

Linked Lists

• An alternate implementation of a list.
– As the name implies, unlike an array the linked list has explicit

connections between elements

– This connection is the only thing that holds the list together.

• Removing a connection to an element makes the element inaccessible.

• Adding a connection to an element makes the element a part of the list.

• The program code is more complex but some operations are
more efficient (e.g., additions and deletions don’t require
shifting of elements).
– Just change some connections.

• Also linked lists tend to be more memory efficient that arrays.
– Again: the typical approach with an array is to make the array larger

than needed. (Unused elements wastes space in memory).

– With a linked list implementation, elements only take up space in
memory as they’re needed.

Start End

Colourbox.com

3/31/2016

Linked lists in Java 5

James Tam

• Insertions and removal of elements can be faster and more
efficient because no shifting is required.

• Elements need only be linked into the proper place
(insertions) or bypassed (deletions)

Linked Lists

James Tam

• Find the insertion point

Insertion

Bob goes between

Alice and Charlie

Alice Charlie

Bob

3/31/2016

Linked lists in Java 6

James Tam

Insertion (2)

• Change the connections between list elements so the new
element is inserted at the appropriate place in the list.

Bob

Alice Charlie

James Tam

• Find location of the element to be deleted

Deletions

Alice CharlieBob

Remove this element

3/31/2016

Linked lists in Java 7

James Tam

Deletions (2)

• Change the connections so that the element to be deleted is
no longer a part of the list (by-passed).

Alice CharlieBob

Remove this element

James Tam

List Elements: Nodes

Freight “data”

Connector

Node

Data (e.g., Book)

Pointer/reference

(connector)

3/31/2016

Linked lists in Java 8

James Tam

Linked Lists: Important Details

• Unlike arrays, many details must be manually and explicitly
specified by the programmer: start of the list, connections
between elements, end of the list.

• Caution! Take care to ensure the reference to the first element
is never lost.
– Otherwise the entire list is lost

Data Ptr Data Ptr Data Ptr

Linked

List

Head

1 The approximate equivalent of a pointer (“ptr”) in Java is a reference.

(Marks the start)

James Tam

More On Connections: The Next Pointer

• A special marker is needed for the end of the list.

• The ‘next’ attribute of a node will either:
1. Contain a reference/address of the next node in the list.

2. Contain a null value.

• (That means once there is a reference to the start of the list
(copy of the “head”), the next pointer of each element can be
used to traverse the list).

Data Next

Data Next Data Next ...

(Marks the end)

3/31/2016

Linked lists in Java 9

James Tam

Location Of The Full Example

• Due to the complexity of this program it will be decomposed
into sections :
– List operation e.g., adding elements, removing elements

• The sections may have sub-sections
– Sub-cases of list operations e.g., removing first element, removing any

element except for the first etc.

• Full example:
– /home/219/examples/linkedLists

James Tam

Driver

Outline Of The Example

Book
• The ‘freight’, the data stored in

each list element

• In the example books only have
a title attribute

BookNode
• The ‘train cars’

• In the example a node has two attributes:

• A book (data/’freight’)

• Next reference

Manager

• Implements all the list operations:
insertions, removals, display of
elements etc.

Curtesy:
James Tam

Tao of
Poo

Colourbox.com

Colourbox.com

3/31/2016

Linked lists in Java 10

James Tam

Defining The Data: A Book

public class Book
{

private String name;
public Book(String aName) { ... }
public String getName() { ... }
public void setName(String aName) { ... }
public String toString() { ... }

}

James Tam

Example: Defining A Node

public class BookNode {

private Book data;

private BookNode next;

}

Information stored by each element

Connects list elements =

null or address of next

element

3/31/2016

Linked lists in Java 11

James Tam

Class BookNode

public class BookNode
{

private Book data;
private BookNode next;

public BookNode()
{

setData(null);
setNext(null);

}

public BookNode(Book someData, BookNode nextNode)
{

setData(someData);
setNext(nextNode);

}

James Tam

Class BookNode (2)

public Book getData() { return(data); }

public BookNode getNext() { return(next); }

public void setData(Book someData) { data = someData; }

public void setNext(BookNode nextNode) { next = nextNode; }

public String toString() {
return(data.toString());

}
} // Book.toString()

public String toString()
{

String temp;
if (name != null)

temp = "Book name: " + name;
else

temp = "Book name: No-name";
return(temp);

}

3/31/2016

Linked lists in Java 12

James Tam

Creating A New Manager (And New List)

public class Driver
{

public static void main (String [] args)
{

Manager aManager = new Manager(); // New manager
...

public class Manager
{

private BookNode head; // Recall: marks start of list
public Manager () {

head = null; // New (empty) list
}

Case 1:

Empty list

head

null

Case 2: Non-

empty list

head

First node

James Tam

A More Detailed Outline Of Class Manager

public class Manager {

public void add() {
// Add new node to end of the list

}

public void display() {
// Iterative: in-order display

}

public void displayRecursive() {
// Recursive: in-order display

}

public void eraseList() { ... }

public void remove() {
// Search and remove node

}

3/31/2016

Linked lists in Java 13

James Tam

List Operations: Linked Lists (Display)

• A temporary pointer/reference is used when successively
displaying the elements of the list.

• When the temporary pointer is null, the end of the list has
been reached.

• Graphical illustration of the algorithm:

• Pseudo code algorithm:
while (temp != null)

display node
temp = address of next node

Data Ptr Data Ptr Data Ptr

TempTemp
Temp

Temp

Head

James Tam

First List Operation: Display

• Case 1: Empty List
// Driver
Manager listManager = new Manager();
listManager.display();

// Manager

public void display()

{

int count = 1;

BookNode temp = head;

System.out.println(LIST_HEADER);

for (int i = 0; i < LIST_HEADER.length(); i++)

System.out.print("-");

System.out.println();

if (temp == null)

System.out.println("\tList is empty: nothing to display");

private String LIST_HEADER =
"DISPLAYING LIST";

3/31/2016

Linked lists in Java 14

Displaying The List: Iterative Implementation
(Empty)

head

null

head

temp

James Tam

First List Operation: Display (2)

• Case 2: Non-empty list
// Driver
listManager.add();
listManager.add();
listManager.add();
listManager.display();

3/31/2016

Linked lists in Java 15

James Tam

Manager.Display()

public void display()
{

int count = 1;
BookNode temp = head;
System.out.println("LIST_HEADER");
for (int i = 0; i < LIST_HEADER.length(); i++)

System.out.print("-");
System.out.println();
if (temp == null)

System.out.println("\tList is empty: nothing to display");
while (temp != null)
{

System.out.println("\t#" + count + ": "+temp); //temp.toString()
temp = temp.getNext();
count = count + 1;

}
System.out.println();

}

Displaying The List: Iterative Implementation
(Non-Empty)

head

BORED OF

THE RINGS

SILENT HILL:

DYING INSIDE

WAR AND

PEACE

3/31/2016

Linked lists in Java 16

Traversing The List: Display

• Study guide:

• Steps (traversing the list to display the data portion of each
node onscreen)

1. Start by initializing a temporary reference to the beginning of the list.

2. If the reference is ‘null’ then display a message onscreen indicating
that there are no nodes to display and stop otherwise proceed to next
step.

3. While the temporary reference is not null:

a) Process the node (e.g., display the data onscreen).

b) Move to the next node by following the current node's next reference
(set the temp reference to refer to the next node).

James Tam

Second List Operation: Destroying List

public void eraseList ()
{

head = null;

}
•Caution! This works in Java because of

automatic garbage collection.

•Be aware that you would have to
manually free up the memory for each
node prior to this step with other
languages.

3/31/2016

Linked lists in Java 17

James Tam

List Operations: Linked Lists (Search)

• The algorithm is similar to displaying list elements except that
there must be an additional check to see if a match has
occurred.

• Conditions that may stop the search:

Temp

Data Ptr Data Ptr Data Ptr

Head

1. Temp = null (end)?

2. Data match?

James Tam

List Operations: Linked Lists (Search: 2)

• Pseudo code algorithm:
Temp refers to beginning of the list

If (temp is referring to an empty list)

display error message “Empty list cannot be searched”

While (not end of list AND match not found)

if (match found)

stop search or do something with the match

else

temp refers to next element

3/31/2016

Linked lists in Java 18

James Tam

List Operations That Change List Membership

• These two operations (add/remove) change the number of
elements in a list.

• The first step is to find the point in the list where the node is to
be added or deleted (typically requires a search even if the
search is just for the end of the list).

• Once that point in the list has been found, changing list
membership is merely a reassignment of pointers/references.
– Again: unlike the case with arrays, no shifting is needed.

James Tam

List Operations: Linked Lists (Insertion)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

3/31/2016

Linked lists in Java 19

James Tam

List Operations: Linked Lists (Insertion: 2)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 3)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

3/31/2016

Linked lists in Java 20

James Tam

List Operations: Linked Lists (Insertion: 4)

• Pseudo code algorithm (requires a search to be performed to
find the insertion point even if the insertion occurs at the end
of the list).

• # Search: use two references (one eventually points to the match

• # while the other points to the node immediately prior).

While (not end of list AND match not found)

if (match found)

stop search or do something with the match

else

temp refers to next element

• # Insert

Node to be inserted refers to node after insertion point

Node at insertion point refers to the node to be inserted

James Tam

Third List Operation: Add/Insert At End

// Driver
listManager.add(); // Empty list at this point
listManager.add();
listManager.add();

3/31/2016

Linked lists in Java 21

James Tam

Manager.Add()

public void add()
{

String title;
Book newBook;
BookNode newNode;

System.out.println("Adding a new book");
System.out.print("\tBook title: ");
title = in.nextLine(); // Get title from user
newBook = new Book(title);
newNode = new BookNode(newBook,null);

// Case 1: List empty: new node becomes first node
if (head == null)
{

head = newNode;
}

James Tam

Manager.Add() : 2

// Case 2: Node not empty, find insertion point (end of list)
else
{

BookNode current = head;
BookNode previous = null;
while (current != null)
{

previous = current;
current = current.getNext();

}
previous.setNext(newNode);
// Adds node to end: since a node’s next field is already
// set to null at creation nothing else need be done.

}
}

3/31/2016

Linked lists in Java 22

James Tam

Adding A Node To The End Of The List: Empty List

head

null
BORED OF

THE RINGS

newNode

Adding first node to empty list

James Tam

Adding A Node To The End Of The List: Non-Empty
List

head

BORED OF

THE RINGS

SILENT HILL:

DYING INSIDE

THE ART OF

WAR

newNode

head

BORED OF

THE RINGS

Adding second node to list with one node

SILENT HILL:

DYING INSIDE

newNode

Adding third node to list with two nodes

3/31/2016

Linked lists in Java 23

James Tam

List Operations: Linked Lists (Removing Elements)

• Graphical illustration of the algorithm

• (Note that the search algorithm must first be used to find the
location of the node to be removed)
– Current: marks the node to be removed

– Previous: marks the node prior to the node to be removed

NULL

LIST Remove

CurrentPrevious

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

• Graphical illustration of the algorithm

NULL

LIST Remove

CurrentPrevious

3/31/2016

Linked lists in Java 24

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

• Graphical illustration of the algorithm

NULL

LIST Remove

CurrentPrevious

Node to be removed has been

bypassed (effectively deleted from the

list)

James Tam

List Operations: Linked Lists (Removing
Elements: 3)

• The algorithm should work with the removal of any node
– First node

– Last node

HeadHead

NULL

LIST Remove

NULL

LIST Remove

CurrentPrevious

3/31/2016

Linked lists in Java 25

James Tam

List Operations: Linked Lists (Removing
Elements: 4)

• The search algorithm will find the node to be deleted and mark
it with a reference

• The node prior to the node to be deleted must also be marked.

• Pseudo code algorithm (removal)
Previous node refers to the node referred by current node (by
pass the node to be deleted)

null

James Tam

Manager.Remove()

public void remove ()
{

// CASE 1: EMPTY LIST
if (head == null)

System.out.println("List is already empty:
Nothing to remove");

// CASE 2: NON-EMPTY LIST
else
{

removeNonempty();
}

}

3/31/2016

Linked lists in Java 26

James Tam

Manager.RemoveNonempty()

// Case 2 & 3:

private void removeNonempty()

{

BookNode previous = null;

BookNode current = head;

String searchName = null;

boolean isFound = false;

String currentName;

Scanner in = new Scanner(System.in);

System.out.print("Enter name of book to remove: ");

searchName = in.nextLine(); // User selects name

James Tam

Manager.RemoveNonempty() : 2

// Determine if match exists

// current points to node to delete

// previous is one node prior

while ((current != null) && (isFound == false))

{

currentName = current.getData().getName();

if (searchName.compareToIgnoreCase(currentName) ==

MATCH)

isFound = true; // Match found, stop traversal

else // No match: move onto next node

{

previous = current;

current = current.getNext();

}

}

3/31/2016

Linked lists in Java 27

James Tam

Manager.RemoveNonempty() : 3

// CASE 2A OR 2B: MATCH FOUND (REMOVE A NODE)

if (isFound == true)

{

System.out.println("Removing book called " +

searchName);

// CASE 2A: REMOVE THE FIRST NODE

if (previous == null)

head = head.getNext();

// CASE 2B: REMOVE ANY NODE EXCEPT FOR THE FIRST

else

previous.setNext(current.getNext());

}

// CASE 3: NO MATCHES FOUND (NOTHING TO REMOVE).

else // isFound == false

System.out.println("No book called " + searchName +

" in the collection.");

}

James Tam

Removing A Node From An Empty List

// Main(), Case 1

listManager.eraseList(); // Reminder: Blows away entire list

listManager.display();

listManager.remove(); // Trying to remove element from empty

3/31/2016

Linked lists in Java 28

James Tam

Removing A Node From An Empty List (2)

• Case 1: Empty List

head

null

searchName:

isFound

:

James Tam

Removing A Node From A Non-Empty List

// Main(), Case 2A

listManager.add();

listManager.add();

listManager.add();

listManager.remove();

3/31/2016

Linked lists in Java 29

James Tam

•Case 2A: Remove first element

Non-Empty List: Remove

head

searchName:

isFound:

WHITE NINJA

WHITE NINJA PRINCE OF LIES
I AM AN AMERICAN

SOLDIER TOO

James Tam

Removing Any Node Except The First

// Main(), Case 2B

listManager.add(); //e.g., add back “White Ninja”

listManager.remove();

3/31/2016

Linked lists in Java 30

James Tam

Non-Empty List: Remove (2)

• Case 2B: Remove any node except for the first

searchName:

isFound:

PRINCE OF LIES

head

PRINCE OF LIES
I AM AN AMERICAN

SOLDIER TOO
WHITE NINJA

James Tam

Removing Non-Existent Node

// Main() Case 3: no match

listManager.remove();

listManager.display();

3/31/2016

Linked lists in Java 31

James Tam

•Case 3: No match

Non-Empty List: Trying To Remove Non-Existent Node

searchName:

isFound:

MOBY DICK

head

I AM AN AMERICAN

SOLDIER TOO
WHITE NINJA

James Tam

Related Material: Recursion

• “A programming technique whereby a function or method calls
itself either directly or indirectly.”

‘Tardis’ images: colourbox.com

3/31/2016

Linked lists in Java 32

James Tam

Direct Call

function

void fun()

...

fun();

James Tam

Indirect Call

f1

f2

3/31/2016

Linked lists in Java 33

James Tam

Indirect Call

f1

f2

f3

…

fn

James Tam

Recursive Programs

• Location of full examples:
– /home/219/examples/linkedList/recursion

3/31/2016

Linked lists in Java 34

James Tam

Types Of Recursion:

– Tail recursion:

• Aside from a return statement, the last instruction in the recursive function or
method is another recursive call.

fun(int x) {
System.out.println(x);
if (x < 10)

fun(++x); // Last real instruction (implicit return)
}

• This form of recursion can easily be replaced with a loop.

– Non-tail recursion:

• The last instruction in the recursive function or method is NOT another
recursive call e.g., an output message

fun(int x) {
if (x < 10)

fun(++x);

System.out.println(x); // Last instruction
}

• This form of recursion is difficult to replace with a loop (stopping condition
occurs BEFORE the real work begins).

James Tam

Simple Counting Example

• First example: can be directly implemented as a loop
public class DriverTail
{

public static void tail (int no)
{

if (no <= 3)
{

System.out.println(no);
tail(no+1);

}
return;

}

public static void main (String [] args)
{

tail(1);
}

}

3/31/2016

Linked lists in Java 35

James Tam

‘Reversed’ Counting Example

public class DriverNonTail

{

public static void nonTail(int no)

{

if (no < 3)

nonTail(no+1);

System.out.println(no);

return;

}

public static void main (String [] args)

{

nonTail(1);

}

}

James Tam

Recursive List Display

• The pseudo code and the diagrammatic trace are the same as
the iterative solution.

• The difference is that repetition occurs with repeated calls to a
recursive method instead of a loop.
– Calls:

• Driver.main() ->

• Manager.displayRecursive() ->

• Manager.displayAndRecurse()

– The first method called will be used for statements that only execute
once each time the list is displayed (e.g., a header with underlining)

– The second method called will be used to display a node at a time. After
displaying the node the program moves onto the next node and calls the
method again.

3/31/2016

Linked lists in Java 36

James Tam

Manager.DisplayRecursive()

public void displayRecursive()

{

BookNode temp = head;

System.out.println("DISPLAYING LIST (R)"); // Display once

for (int i = 0; i < LIST_HEADER.length(); i++)

System.out.print("-");

System.out.println();

if (temp == null) // Case 1: Empty

System.out.println("\tList is empty: nothing to

display");

else // Case 2: Non-empty

{

int count = 1;

displayAndRecurse(temp,count);

}

System.out.println();

}

James Tam

Manager.DisplayAndRecurse()

private void displayAndRecurse(BookNode temp, int count)

{

// Stop when end of list reached

if (temp == null)

return;

else

{

// Display data and move onto next element

System.out.println("\t#" + count + ": " + temp);

temp = temp.getNext(); // Get address of next node

count = count + 1;

displayAndRecurse(temp,count);

}

}

3/31/2016

Linked lists in Java 37

James Tam

•Case 1: Empty list

Recursive Display Of List

head

temp

James Tam

•Case 2: Non-empty list

Recursive Display Of List

head

I AM AN AMERICAN

SOLDIER TOO
WHITE NINJA

temp

count

3/31/2016

Linked lists in Java 38

James Tam

After This Section You Should Now Know

• What is a linked list and how it differs from an array
implementation

• How to implement basic list operations using a linked list
– Creation of new empty list

– Destruction of the entire list

– Display of list elements (iterative and recursive)

– Searching the list

– Inserting new elements

– Removing existing elements

• How to write a recursive equivalent of an iterative solution

• What is the benefit of a recursive vs. iterative implementation
– What is backtracking

• How to trace a recursive program
– Programs that are the equivalent of an iterative solutions

– Programs that employ backtracking

