10.5 Case Study: Payroil System Using Polymorphism

Abstract superclass Employee declares the “interface” to the hierarchy—that is,
of methods that a program can invoke on all Employee objects. We use the term '
face” here in a general sense to refer to the various ways programs can communicat
objects of any Employee subclass. Be careful not to confuse the general notion of an'
face” to something with the formal notion of a Java interface, the subject of Sectior
Each employee, regardless of the way his or her earnings are calculated, has a first n
last name and a social security number, so private instance variables firstName,
Name and socialSecurityNumber appear in abstract superclass Employee.

» Software Engineering Observation 10.4

W A subclass can inherit “interface” or “implementation” from a superclass. Hierarchies a
= for implementation inhevitance tend to have their functionality high in the hierarchy
new subclass inherits one or more methods that were implemented in a superclass, «
subclass uses the superclass implementations. Hierarchies designed for interface inheritan
10 have their functionality lower in the hierarchy—a superclass specifies one or more .
methods that must be declared for each concrete class in the hierarchy, and the ina
subclasses override these methods to provide subclass-specific implementations.

The following sections implement the Employee class hierarchy. The first for
tions each implement one of the concrete classes. The last section implements a te
gram that builds objects of all these classes and processes those objects polymorphic

10.5.1 Creating Akstract Superclass Employee

Class Employee (Fig. 10.4) provides methods earnings and toString, in addition
get and ser methods that manipulate Employee’s instance variables. An earnings
certainly applies generically to all employees. But each earnings calculation depends
employee’s class. So we declare earnings as abstract in superclass Employee becaus
fault implementation does not make sense for that method—there is not enough inf
tion to determine what amount earnings should return. Each subclass overrides ear
with an appropriate implementation. To calculate an employee’s earnings, the progr
signs a reference to the employee’s object to a superclass Employee variable, then ir
the earnings method on that variable. We maintain an array of Employee variable:
of which holds a reference to an Emp1oyee object (of course, there cannot be Employ
jects because Employee is an abstract class—because of inheritance, however, all obj:
all subclasses of Employee may nevertheless be thought of as Employee objects). Th
gram iterates through the array and calls method earnings for each Employee objec
processes these method calls polymorphically. Including earnings as an abstract m
in Employee forces every direct subclass of Employee to override earnings in order
come a concrete class. This enables the designer of the class hierarchy to demand tha
subclass provide an appropriate pay calculation.

Method toString in class Employee returns a String containing the first nam
name and social security number of the employee. As we will see, each subcl
Employee overrides method toString to create a string representation of an object ¢
class that contains the employee’s type (e.g., "salaried employee:") followed by tl
of the employee’s information.

™ 1 +n oA t [l | ~ 1 .) s .))

470 Chapter i0 Object-Oriented Programming: Polymorphism

earnings toString
firstName lastName
ESCloyER LT social security number: SSN
salaried- salaried emplayee: firstName lastName
Employee weeklySalary social security number: SSN
pioy weekly salaryi weeklysalary
If hours <= 40
*
Hourly- if h::g‘> 40houra hourly employee: f[irstName lastName
Em loyee 40 * wage + social security number: SSN
pioy (hoursg— 40) * hourly wage: wage) hours worked: haurs
wage * 1.5
commission employee: firstName lasiName
Commission- commissionRate * social secyrity number: SSN
Employee grossSales gross sales! grossSales;
commission rate: commissionRate |
base salaried commission emplayee: '
firstName lastName i
o |
2:;::::“_ ;"c):r:;::::o;ll:te social security number: SSN !
Employee basasalaly gross sales: grossSales;

commission rate: commissionRate;
base salary: baseSalary

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

shows the desired results of each method. [Note: We do not list superclass Employee’s get
and sez methods because they are not overridden in any of the subclasses—each of these.

methods is inherited and used “as is” by each of the subclasses.] :
Let us consider class Employee’s declaration (Fig. 10.4). The class includes a con-
structor that takes the first name, last name and social security number as arguments (lines

11-16); get methods that return the first name, last name and social security number (lines
25-28, 37-40 and 49-52, respectively); sez methods that set the first name, last name and
social security number (lines 19-22, 31-34 and 4346, respectively); method toString = =
(lines 55-59), which returns the string representation of Employee; and abstract method

earnings (line 62), which will be implemented by subclasses. Note that the Emp1oyee con-

structor does not validate the social security number in this example. Normally, such val- 3

idation should be provided.
Why did we decide to declare earnings as an abstract method? It simply does not

make sense to provide an implementation of this method in class Employee. We cannot
calculate the earnings for a general Emp1oyee—we first must know the specific Employee
type to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings. |
implementation and that a program will be able to use superclass Employee variables ©0 -

invoke method earnings polymorphically for any type of Employee.

y // Fig. 10.4: Em
g // employee abst

; public abstract

Fi

private Strin
private Strim
private Strin

// three-argu
public Employ:

firstName -
lastName =
socialSecul
} // end thres

// set first
public void se

" firstName =
} // end methc

// return firs
public String

{
return firs
// end methc

// set last na
public void se

{
lastName =
} // end methe

/¢ return last
public String
{

return last
} // end metho

// set social
public void se
{

socialSecur
} // ond metho

f/ return soci
pubtic String
{

return soci.
} end metho

'8.10.4 | Employee abs

O R e N -

0
it
12
13
' 14
15
16
17
13
19
20
2t

i 22

23
24
25
26

28
.29
30
3
32
33
34
35
| 36
i 37
I 38

- 39
'. 40
f 41
' 42
5 43
; 44
45
46
47
48
49
50
si
52

S——————

P —

27

10.5 Case Study: Payroli Systen Using Polymorphism

// Fig. 10.4: Employee.java
// Employee abstract superclass.

public abstract class Emp1oye;

{

private String firstName;

private String lastName;
private String socialSecurityNumber;

// three-argument constructor
public Employee(String first, String last, String ssn)
{
firstName = first;
JastName = last;
socialSecurityNumber = ssn;
} // end three-argument Employee constructor

// set first name
public void setFirstName(String first)

{
firstName = first;
} // end method setFirstName

// return first name
public String getFirstName()

{
return firstName;
} // end method getFirstName

// set last name
public void setLastName(String last)

{
lastName = last;
} // end method setLastName

// return last name
public String getlLastName()

L
return lastName;
} // end method getlastName

J// set social security number
public void setSocialSecurityNumber(String ssn)

socialSecurityNumber = ssn; // should validate
} // end method setSocialSecurityNumber

// return social security number
public String getSocialSecurityNumber()
{

return socialSecurityNumber;
} // end method getSocialSecurityNumber

Fig. 10.4 | Employee abstract superclass. (Part | of 2.)

471

472 Chapter 10 Object-Oriented Programming! Polyinorphism

%

54 // return String representation of Employee object

55 public String toString(Q)

56 {

57 return String.format("%s %s\nsocial security number: %s",

58 getFirstName(), getLastName(Q), getSocialSecurityNumber());
59 } // end method toString

50

61 // abstract method overridden by subclasses

62 public abstract double earnings(); // no implementation here

63 } // end abstract class Employee

Fig. 10.4 | Employee abstract superclass. (Part 2 of 2.)

10.5.2 Creating Concrete Subclass SalariedEmployee

Class SalariedEmployee (Fig. 10.5) extends class Employee (line 4) and overrides earn-
ings (lines 29-32), which makes SalariedEmployee a concrete class. The class includes a
constructor (lines 9-14) that takes a first name, a last name, a social security number and
a weekly salary as arguments; a sez method to assign a new non-negative value to instance
variable week1ySalary (lines 17-20); a ger method to return weeklySal ary’s value (lines
23-26); a method earnings (lines 29-32) to calculate a SalariedEmployee’s earnings;
and a method toString (lines 35-39), which returns a String including the employee’s
type, namely, "salaried employee: " followed by employee-specific information pro-
duced by superclass Employee’s toString method and SalariedEmployee’s
getWeeklySalary method. Class SalariedEmployee’s constructor passes the first name,
last name and social security number to the Emp1oyee constructor (line 12) to initialize the

1 // Fig. 10.5: SalariedEmployee.java

2 // SalariedEmployee class extends Employee.

3

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 7/ four-argument constructor

9 public SalariedEmployee(String first, String last, String ssn,
19 double salary)

11

12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor

is

16 // set salary

17 public void setWeeklySalary(double salary)

18 {

19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21

Fig. 10.5 | SalariedEmployee class derived from Employee. (Part | of 2))

J// rett
public

{
retu
} // et

// calc
public

{
rety
} /7 er

// reti
public
{

rety
s

] } // er
} // end «

Fig. 10.5 | salz

private instanc
abstract methoc
the SalariedEn
riedEmployee 1
of course, we w

Method tc
method toStri
ployee would h
ployee’s toStr
security numbe.
a complete strin
returns "salari
(i.e., first name.
class’s toString
of a SalariedEn
the class’s getWe

10.5.3 Creat

Class Hour1yEmg
constructor (line
number, an hou
set methods that
od setWage (lin
31-35) ensures t
HourlyEmployee
wage and hours,
ployee’s earning

10.5 Case Study: Payroll System Using Polymorphism 473

// return salary
public double getWeeklySalary(Q

{
return weeklySalary;
} // end method getWeeklySalary

// calculate earnings; override abstract method earnings in Employee
public double earnings()

{
return getWeeklySalary(Q);
} // end method earnings

// return String representation of SalariedEmployee object
public String toString(Q

{
return String.format("salaried employee: %s\nis: 1%, .2f",

super.toString(), "weekly salary”, getWeeklySalary(Q))i
} // end method toString
} // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee class derived from Employee. (Part 2 of 2.)

private instance variables not inherited from the superclass. Method earnings overrides
abstract method earnings in Employee to provide a concrete implementation that returns
the SalariedEmployee’s weekly salary. If we do not implement earnings, class Sala-
riedEmployee must be declared abstract—otherwise, a compilation error occurs (and,
of course, we want SalariedEmployee here to be a concrete class).

Method toString (lines 35-39) of class SalariedEmployee overrides Employee
method toString. If class SalariedEmployee did not override toString, SalariedEm-
ployee would have inherited the Employee version of toString. In that case, SalariedEm-
ployee’s toString method would simply return the employee’s full name and social
security number, which does not adequately represent a SalariedEmployee. To produce
a complete string representation of a SalariedEmployee, the subclass’s toString method
returns "salaried employee: " followed by the superclass Employee-specific information
(i.e., first name, last name and social security number) obtained by invoking the super-
class’s toString (line 38)—this is a nice example of code reuse. The string representation
of a SalariedEmployee also contains the employee’s weekly salary obtained by invoking
the class’s getWeeklySalary method.

10.5.3 Creating Concrete Subclass HourlyEmployee

Class Hour1yEmployee (Fig. 10.6) also extends class Employee (line 4). The class includes a
constructor (lines 10—16) that takes as arguments a first name, a last name, a social security
number, an hourly wage and the number of hours worked. Lines 19-22 and 31-35 declare
set methods that assign new values to instance variables wage and hours, respectively. Meth-
od setWage (lines 19-22) ensures that wage is non-negative, and method setHours (lines
31-35) ensures that hours is between 0 and 168 (the total number of hours in a week). Class
HourlyEmployee also includes gez methods (lines 25-28 and 38-41) to return the values of
wage and hours, respectively; a method earnings (lines 4450) to calculate an HourlyEm-
ployee’s earnings; and a method toString (lines 53-58), which returns the employee’s type,

474 Chaoter 10 Object-Oriented Programming: Poiymorphism

namely, "hourly employee: " and employee-specific information. Note that the Hour1yEm-
ployee constructor, like the SalariedEmployee constructor, passes the first name, last name

1 // Fig. 10.6: HourlyEmployee. java
2 // HourlyEmployee class extends Employee.
3
4 public class HourlyEmployee extends Employee
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // five-argument constructor
10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
i5 setHours(hourswWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17
18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 wage = (hourlywWage < 0.0) ? 0.0 : hourlyWage;
22 } // end method setWage
23
24 // return wage
25 public double getWage()
26 {
27 return wage;
28 } // end method getWage
29
30 // set hours worked
31 public void setHours(double hoursWorked)
32 { .
33 hours = ((hoursWorked >= 0.0) & (hoursWorked <= 168.C)) ?
34 hoursWorked : 0.0;
o 1 } // end method setHours
36
37 /7 return hours worked
38 public double getHours()
39 {
40 return hours;
41 } // end method getHours
42
43 // calculate earnings; override abstract method earnings in Employee
44 public double earnings()
45 {
46 if (getHours() <= 40) // no overtime
47 return getWage() * getHoursQ);
48 else
49 return 40 * getWage() + (gethours() - 40) * getWage() * !.5;
50 } // end method earnings

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part | of 2.)

// retu
public

‘ {
retu
[

} // em
} // end ¢

Fig. 10.6 | Hour

and social securi
private instance
(line 56) to obta

security number)

10.5.4 Creati:

Class Commissio
a constructor (lit
a sales amount ar
values to instanc
(lines 25-28 and
ings (lines 43—4

// Fig. 10.
// Commissit

public clas:
{
private ¢
private ¢

// five-¢
public Cc

double
{

super(

setGro

setCom
} /7 enc

// set ¢
public vo

{
commis
} /7 end

. 10.7 | Commis:

10.5 Case Study: Payroll System Using Polymorphism 4735

-5l

52 // return String representation of HourlyEmployee object

53 public String toString()

54 i

55 return String.format("hourly employee: %s\n%s: $%,.2f; 4s: %, 2f",
56 super.toString(), "hourly wage", getWage(),
. 57 “"hours worked”, getHours());

58 } // end method toString

55} // end class HourlyEmployee

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part 2 of 2.)

and social security number to the superclass Employee constructor (line 13) to initialize the
private instance variables. In addition, method toString calls superclass method toString
(line 56) to obtain the Employee-specific information (i.e., first name, last name and social
security number)—this is another nice example of code reuse.

10.5.4 Creating Concrete Subclass CommissionEmployee

Class Commi ssionEmployee (Fig. 10.7) extends class Employee (line 4). The class includes
a constructor (lines 10—16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; set methods (lines 19-22 and 31-34) to assign new
values to instance variables commissionRate and grossSales, respectively; get methods
(lines 25-28 and 37—40) that retrieve the values of these instance variables; method earn-
ings (lines 43—46) to calculate a CommissionEmployee’s earnings; and method toString

| // Fig. 10.7: CommissionEmployee.java

2 // CommissionEmployee class extends Employee.
53

4 public class CommissionEmployee extends Employee

5 {

6 private double grossSales; // gross weekly sales

7 private double commissionRate; // commission percentage
8

9 // five-argument constructor

10 public CohmissionEmployee(String first, String last, String ssn,
" double sales, double rate)

12

13 super(first, last, ssn);

14 setGrossSales(sales);

is setCommissionRate(rate);

16 } // end five-argument CommissionEmployee constructor
17

18 // set commission rate

19 public void setCommissionRate(double rate)

20 {

21 commissionRate = (rate > 0.0 & rate < 1.0) ? rate : 0.0;
22 } // end method setCommissionRate

23

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part | of 2.)

&
476 Chapter 10 Object-Criented Programming: Polymorpiiism
4 // return commission rate 1 // Fig. 10.8:
5 public double getCommissionRate O 2 // BasePlusCc
- 26 { 3
27 return commissionRate; 4 public class
28 } // end method getCommissionRate 5 {
29 6 private dc
30 // set gross sales amount 7
31 public void setGrossSales(double sales) 8 // six-arc
32 9 public Bas
33 grossSales = (sales < 0.0) ? 0.0 : sales; o String
34 } // end method setGrossSales . it {
35 3 ik] super(
36 // return gross sales amount : i3 setBase
37 public double getGrossSal esQ)) 14 } // end s
38 { 4 15
39 return grossSales; e 16 // set bas
40 } // end method getGrossSales 3 17 public voi
41 8 i3
42 // calculate earnings; override abstract method earnings in Employee 5 19 baseSal
43 public double earningsQ 20 }// endm
44 { 21
45 return getCommissionRate() * getGrossSales(); 22 // return
46 } // end method earnings 23 public dou
47 24 {
48 // return String representation of Commi ssionEmployee object ’ 25 return
49 public String toStri ngQ | 26 } // endm
50 { 27
51 return String.format("%s: 4s\n¥s: 8%,.0f; ¥s: %.27", 28 // calcula
52 “commission emplovee", super.toStringQ), 29 public dou
53 "gross sales”, getGrossSalesQ), 3 ! {
54 "conmission rate’, getCommissionRate())3 E 3 return
55 } // end method toString A 32 }// endm
56 3} // end class CommissionEmployee oy 3
// return
Fig. 10.7 | CommissionEmployee class derived from Employee. (Part 2 of 2.) 4T : r{)ub'l'ic str
(lines 49-55), which returns the employee’s type, namely, "commission employee: " and . J}% & retH;nc
employee-specific information. The CommissionEmp1 oyee’s constructor also passes the %, "bi;
first name, last name and social security number to the Employee constructor (line 13) to g }// end m
initialize Employee’s private instance variables. Method toString calls superclass meth- | } /7 end clas
od toString (line 52) to obtain the Empl oyee-specific information (i.e., first name, last l
name and social security number). 0.8 | BasePlu
' . ¢ sionEmployee also
10.5.5 Creating l_ndu:ect Concrete Subglass i variable baseSalary
BasePlusCommissionEmployee k earnings (lines 29-
Class BaseP1usCommi ssionEmployee (Fig. 10.8) extends class CommissionEmployee (line 4) A | line 31 in method e:
and therefore is an indirect subclass of class Emp1oyee. Class BaseP1usCommissionEmployee A5 culate the commissi
has a constructor (lines 9—14) that takes as arguments a first name, a last name, a social se- i code reuse. BasePTu
curity number, a sales amount, a commission rate and a base salary. It then passes the first i representation of a
name, last name, social security number, sales amount and commission rate to the Commis- e | lowed by the Strir
sionEmployee constructor (line 12) to initialize the inherited members. BasePTusCommis- 2] method (another ex:
bl

V&G B YN -

41

10.5 Case Study: Payroll System Using Polymorphism 477

// Fig. 10.8: BasePlusCommissiontmployee.java
// BasePlusCommissionEmployee class extends CommissionEmployee.

public class BasePlusCommissionEmployee extends CommissionEmployee

{

private double baseSalary; // base salary per week

// six-argument constructor
public BasePlusCommissionEmployee(String first, String last,
String ssn, double sales, double rate, double salary)

super(first, last, ssn, sales, rate);
setBaseSalary(salary); // validate and store base salary
} // end six-argument BasePlusCommissionEmployee constructor

// set base salary
public void setBaseSalary(double salary)

{
baseSalary = (salary < 0.0) ? 0.0 : salary; // non-negative
} // end method setBaseSalary

// return base salary
public double getBaseSalary()

{
return baseSalary;
} // end method getBaseSalary

// calculate earnings; override method earnings in CommissionEmployee
public double earnings()
{
return getBaseSalary() + super.earningsQ;
} // end method earnings

// return String representatian of BasePlusCommissionEmplayee object
public String toString()
{
return String.format("%s %s; %s: §%,.2f",
"base-salaried”, super.toStringQ),
"base salary", getBaseSalary());
} // end method toString

} // end class BasePlusCommissionEmployee

Fig. 10.8 | BaseP1usCommissionEmployee class derived from CommissionEmployee.

sionEmployee also contains a sez method (lines 17-20) to assign a new value to instance
variable baseSalary and a ger method (lines 23-26) to return baseSalary’s value. Method
earnings (lines 29—32) calculates a BasePTusCommissionEmployee’s earnings. Note that
line 31 in method earnings calls superclass Commi ssionEmployee’s earnings method to cal-
culate the commission-based portion of the employee’s earnings. This is a nice example of
code reuse. BaseP1usCommissionEmployee’s toString method (lines 35-40) creates a string
representation of a BasePlusCommissionEmployee that contains "base-salaried”, fol-
lowed by the String obtained by invoking superclass CommissionEmployee’s toString

method (another example of code reuse), then the base salary. The result is a String begin-

478 Chapter 10 Object-Oriented Programming: Posymorphism

ning with "base-salaried commi ssion employee” followed by the rest of the BasePlus-
Commi ssionEmployee’s information. Recall that CommissionEmp] oyee’s toString obrains
the employee’s first name, last name and social security number by invoking the toString
method of its superclass (i.e., Employee)—yet another example of code reuse. Note that
BasePlusCommissionEmployee’s toString initiates a chain of method calls that span all
three levels of the Employee hierarchy.

10.5.6 Demonstrating Polymorphic Processing, Operator instanceof
and Downcasting

To test our Employee hierarchy, the application in Fig. 10.9 creates an object of each of
the four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BaseP]usCommi ssionEmployee. The program manipulates these objects, first via variables
of each object’s own type, then polymorphically, using an array of Employee variables.
While processing the objects polymorphically, the program increases the base salary of
cach BasePTusCommissionEmployee by 109 (this, of course, requires determining the ob-
ject’s type at execution time). Finally, the program polymorphically determines and out-
puts the type of each object in the Employee array. Lines 9-18 create objects of each of the
four concrete Employee subclasses. Lines 22-30 output the string representation and earn-
ings of each of these objects. Note that each object’s toString method is called implicitly
by printf when the object is output as a String with the %s format specifier.

Line 33 declares employees and assigns it an array of four Employee variables. Line 36
assigns to element employees[0] the reference to a SalariedEmployee object. Line 37
assigns to element employees[1] the reference to an HourlyEmployee object. Line 38
assigns to element employees[2] the reference to a CommissionEmployee object. Line 39
assigns to element employee[3] the reference to a BasePlusCommissionEmployee object.

| // Fig. 10.9: PayrollSystemTest.java

2 // Employee hierarchy test program.

3

4 public class PayrollSystemTest

5

6 public static void main(String args[])

7 e

3 // create subclass objects

9 SalariedEmployee salariedEmployee =

10 new SalariedEmployee("Jjohn", "Smith", "111-11.-1111", £00.00);
1 HourlyEmployee hourlyEmployee =

12 new HourlyEmployee("Karen", “Price", "222-22-2222", 16.75, 40)3
13 CommissionEmployee commissionEmployee =

14 new CommissionEmployee(

15 “Sue”, "Jones™, "333-33-3333", 10000, .06)8

16 BasePlusCommissionEmployee basePTusCommissionEmployee =

17 new BasePTusCommissionEmployee(

18 "Bob", "Lewis", “"444-44-4444", 5000, .04, 300)

19

20 System.out.printin("fmplovees processed individually:\n");

Fig. 10.9 | Employee class hierarchy test program. (Part | of 3.)

71
72

System
sal
System
hou
System
com
System
bas
ez

// cre
Employ

// ini
employ
employ
employ
employ

System

// gen
for (

{
Sys

//
if
{

Y/
Sys
Y // e

// get
for (
Sys’
} // end
} // end cl:

Fig. 10.9 | Employ

