
10/26/2016

Administrative and course introduction 1

Introduction to VBA (Visual Basic For
Applications) Programming

• Origins of VBA, creating and running a VBA program

• Variables & constants

• Interactive programs

• Formatting documents

• Debugger basics

• Security

• Introduction to program documentation

• Online support: https://support.office.com/en-US/article/create-
or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c

B.A.S.I.C.

• Beginner’s All-Purpose Symbolic Instruction Code (BASIC)
– From: www.acm.org (original full article: http://time.com/69316/basic/)

• A widely used programming language

• It was relatively simple to learn (statements were “English-like”
e.g., “if-then”)

• Widely popular and it was commonly packaged with new
computers in the 1970’s and 1980’s

• (A then relatively unknown company: Microsoft got it’s initial
cash inflows and reputation producing several versions of the
language)

https://support.office.com/en-US/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c
http://www.acm.org/
http://time.com/69316/basic/

10/26/2016

Administrative and course introduction 2

B.G.

www.colourbox.com

Microsoft
origins: if there
is time

Visual Basic

• A newer programming language developed by Microsoft

• It was designed to make it easy to add practical and useful
features to computer programs e.g., programmers could add a
graphic user interface, database storage of information etc.

• Also it can take advantage of the built in capabilities of the
various versions of the Windows operating system
– Why write a feature of a program yourself when it already “comes with

the computer”

• For more information:
– http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

http://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

10/26/2016

Administrative and course introduction 3

Visual Basic For Applications (VBA)

• Shares a common core with Visual Basic.
– Statements ‘look’ similar

• Unlike Visual Basic, VBA programs aren’t written in isolation
(creating a program just for it’s own sake).
– Most programs are written to be standalone: a computer game can be

run without (say) running a web browser or MS-Office.

• VB = Visual Basic, VBA = Visual Basic for Applications

• Each VBA program must be associated with a ‘host’ application
(usually it’s Microsoft office document such as MS-Word but
other applications can also be augmented by VBA programs).
– The host application is enhanced or supplemented by the VBA program

– “Why doesn’t this stupid word processor have this feature??!!”

- Now you can add that feature yourself using VBA

Visual Basic For Applications (VBA): 2

• Important! Because every VBA program must be run within
the context of host application when you are learning to write
your programs do not open up an important MS-Word
document and run your programs.
– The host program often needs an Word document in order to run certain

capabilities.

– VBA programs often change documents (formatting, style, text).

– Therefore use only small ‘test’ MS-Word documents when running your
VBA programs otherwise your information may be lost or corrupted.

10/26/2016

Administrative and course introduction 4

Macros

• Macro: a sequence of keystrokes or mouse selections
(instructions to the computer) that can be repeated over and
over
– MS-Office can be augmented by writing Macros (essentially computer

programs) that will run either for multiple documents or only for a
particular document.

– In this class we will focus solely on MS-Word macro programming

• VBA (as guessed) is an example of a macro programming
language e.g., you can write a program that includes a series of
formatting and other commands that you frequently carry out
in Word documents

• Write the commands once in the form of a program and just
re-run this program instead of re-entering each command

Macros And The Web-Based Office

• According to Microsoft macros are not accessible via their
online Office products:

–https://support.office.com/en-us/article/Differences-between-using-a-workbook-in-
the-browser-and-in-Excel-f0dc28ed-b85d-4e1d-be6d-
5878005db3b6?CorrelationId=917b1609-97e9-4cc7-9eeb-d188939ad740&ui=en-
US&rs=en-US&ad=US

• Result: use a computer with the desktop version of Office
installed.
– 203 lab

– Other campus computers

• Some ‘labs’ may have open access hours

– It is CRUICIAL that you test your program on the computers in the 203 lab
because your assignment must work on the lab machines in order to
receive credit.

https://support.office.com/en-us/article/Differences-between-using-a-workbook-in-the-browser-and-in-Excel-f0dc28ed-b85d-4e1d-be6d-5878005db3b6?CorrelationId=917b1609-97e9-4cc7-9eeb-d188939ad740&ui=en-US&rs=en-US&ad=US

10/26/2016

Administrative and course introduction 5

Writing Macros

• It is not assumed that you have any prior experience writing
computer programs (macro language or something else).

• Consequently early examples and concepts will be quite
rudimentary i.e., “we will go slow”
– The effect is that you may find that the capabilities of the early examples

will duplicate familiar capabilities already built into MS-Word

• Why are we writing a macro program for this feature?

• Makes it easier to understand (you know the expected result).

• Keeps the example simpler.

• Later examples will eventually demonstrate the ‘power’ of
macros
– You can do things that would be impossible (or at least difficult) with the

default capabilities built into MS-Word

Can You Complete The Following Tasks?

• Open a MS-Word document and replace every instance of one
phrase e.g., tamj@ucalgary.ca with another
tamj@cpsc.ucalgary.ca

• Open every document in a folder and perform the same search
and replace operation:
– 2 documents?

– 10 documents?

– 100 documents?

– All the documents in a particular folder?

– What if you just wanted to open the word documents with a particular
word or phrase in the name e.g., “assignments_2014”?

• This is an example where writing a macro once is a more
efficient approach
– One answer to the question: “Why are we learning this???”

mailto:tamj@ucalgary.ca
mailto:tamj@cpsc.ucalgary.ca

10/26/2016

Administrative and course introduction 6

Advanced Use Of Macros

• Although it’s beyond the scope of this class the following
example is introduced now to make you aware of the power of
VBA and macro languages.
– It can actually be used to perform real tasks.

• You can use a macro to take advantage of the capabilities of
each MS-Office application:
– Establishing references to applications to ‘link’ them

– Take the output from one application and making it the input of another.

Advanced Use Of Macros (2)

• Example: macros can automate the following task
– Store data in MS-Access

– Store the query results in MS-Excel and perform calculations on the data

– Use the formatting capabilities of MS-Word to produce reports

– MS-Outlook can email the final documents

10/26/2016

Administrative and course introduction 7

Viewing The ‘Developer’ Ribbon (MS-Word 2013)

• The macro programming capability comes built-in to the MS-
Office suite.
– You simply have to enable that functionality

• Steps

1. Select the ‘File’ ribbon 2. Select ‘options’

Viewing The ‘Developer’ Ribbon (MS-Word 2013): 2

3A) Select “customize the ribbon” 3B) Check the ‘Developers’ box

10/26/2016

Administrative and course introduction 8

Viewing The ‘Developer’ Ribbon (MS-Word 2013): 3

• This should add a new ribbon “Developer”

Alternate: View And Run Macros

• You may or may not be able to edit the MS-Word ribbon with
some computer labs.

• You can see view macros via the ‘view’ tab on the ribbon
(albeit with fewer options)

10/26/2016

Administrative and course introduction 9

Macros And Computer Security

• Computer viruses are simply malicious computer programs.

• Macros can be a useful mechanism for reducing repetition or
adding new capabilities to MS-Office.

• But as is the case when writing a computer program malicious
code can also be written with a macro and the virus can be
activated by just opening the MS-office document that
contains the macro.

• Just because you are writing macro programs does not mean
that you shouldn’t take macro security seriously!

Examples Macros Viruses

• “Melissa”: Information about an old but ‘successful’ Macro
Virus
– http://www.cnn.com/TECH/computing/9903/29/melissa.02.idg/index.html?_s=PM:TECH

– http://www.symantec.com/press/1999/n990329.html

– http://support.microsoft.com/kb/224567

• Macro viruses aren’t just “ancient history”, take the potential
threat seriously!
– http://www.symantec.com/avcenter/macro.html

– http://www.microsoft.com/security/portal/threat/encyclopedia/search.aspx?query=Virus

– http://ca.norton.com/search?site=nrtn_en_CA&client=norton&q=macro+virus

http://www.symantec.com/press/1999/n990329.html
http://www.symantec.com/press/1999/n990329.html
http://support.microsoft.com/kb/224567
http://www.symantec.com/avcenter/macro.html
http://www.microsoft.com/security/portal/threat/encyclopedia/search.aspx?query=Virus
http://ca.norton.com/search?site=nrtn_en_CA&client=norton&q=macro+virus

10/26/2016

Administrative and course introduction 10

Enabling Macros To Run

• If you can' t run macros in MS-office (you see odd error
messages) then examine the "Trust Center“ settings in Word

1. Select the ‘File’ ribbon 2. Select ‘options’

Enabling Macros To Run (2)

3A) Select “Trust Center” 3B) Select “Trust Center Settings”

10/26/2016

Administrative and course introduction 11

Enabling Macros To Run (3)
4A) Select “Macro Settings” 4B) Select “Disable all macros with notification”

5) Exit MS-Word (close ALL documents)

More
secure

Less
secure

Enabling Macros To Run (4)

• The default setting for MS-Word should already be set to
“disable macros with notification” but these steps will allow
you to use machines set differently

10/26/2016

Administrative and course introduction 12

Effect: Opening Word Documents

• Using this setting will disable all macros by default (safer
approach) but you can still enable the macros as the document
is opened.

JT’s caution
• You should not casually

select this option for all MS-
Word documents

• It’s recommended that you
ONLY enable macros you
have created (or the lecture
examples)

Macro Security

• DO NOT take the ‘easy’ way out

NO!

More
secure

Less
secure

For more information:
http://www.office.microsoft.com/en-us/help/enable-or-disable-macros-in-office-documents-HA010031071.aspx

http://www.office.microsoft.com/en-us/help/enable-or-disable-macros-in-office-documents-HA010031071.aspx

10/26/2016

Administrative and course introduction 13

Creating Macros

1. Record the macro automatically: keystrokes and mouse
selections will be stored as part of the macro

2. Manually enter the Macro (type it in yourself into the VBA
editor)

Recording Macros

• Developer ribbon
– “Record Macro”

– Recording details What to
name the
macro

Where to
store the
macro

10/26/2016

Administrative and course introduction 14

Naming The Macro: Conventions

• Part of your assignment marks will be awarded according to
how well your programs conform to stylistic conventions
such as naming conventions employed.
– Macros should be given a good self-explanatory name: describes the

purpose of the program e.g., ‘formatting_resume_headings’
– Additional information about the program can be provided in the

‘description’ field but for this class we will do this using ‘program
documentation’ (described later).

• Language requirements (macro name):
• Must start with an alphabetic letter, after than any combination of letters

and numbers may be used
• OK: “assigment1”, “a2939” Not OK: “1assignment”, “*assignment”

• Maximum length of 80 characters
• It cannot contain spaces, punctuation or special characters such as # or !

–‘resume headings’ (Not Allowed: space character)
–‘macros!’ (Not Allowed: special character)

• Can contain underscores (separate long names)

The First Simple Macro

• With word processing there’s sometimes a need to apply
multiple formatting styles (bold, italics, underline) to high-
lighted text

• Manually applying the required formatting to each block of
text can be tedious
– Recall: Macros can be used to automate or shorten some tasks

• This first example macro program will be used to show:
– How to create a VBA macro for MS-Word

– How to automate a task using a macro

10/26/2016

Administrative and course introduction 15

Recording A Simple Macro

• (Of course a macro isn’t needed to use this formatting effect
but it’s easiest to start with a simple example).

• Bold face highlighted text.
– Select the developer tab and press record

Recording A Macro (2)

• Give the macro a self explanatory name and press ‘OK’ (recording
begins).

• Note: record the macro in the current document and not “All
documents” (Important!)

10/26/2016

Administrative and course introduction 16

Recording A Macro (3)

• Select whatever options you want to add to the recording of
the macro
– In this case you would select bold font

– All commands have been entered so you can stop the recording

Running A Recorded Macro

• Under the Developer ribbon select ‘macros’

• Select the macro and then ‘run’ it

10/26/2016

Administrative and course introduction 17

Running A Recorded Macro (2)

• In this case nothing happened?
– This macro changes selected/highlighted text to bold

– You need to select some text before running the macro

Running A Recorded Macro (3)

• After selecting the text and running the macro again, whatever
text was highlighted now becomes bold.

10/26/2016

Administrative and course introduction 18

Recording Macros: Additional Comments

• Don’t rely on creating all your macros by recording them.

• Drawbacks:
– (Problem in terms of this class) to demonstrate your understanding of

concepts you will be asked to manually write VBA code

• You won’t be adequately prepared if you rely on automatically recording
your programs

– (Problem with doing this in real work) The automatically generated
program code automatically is larger and more complicated than is
necessary

• “Bloated” code

• Look under search terms such as +bloated "vba code" +recorded for
examples of why automating recording VBA programs can be problematic.

Auto Generated VBA Program: 24 Lines
Sub heading()

With Selection.ParagraphFormat
.LeftIndent = InchesToPoints(0)
.RightIndent = InchesToPoints(0)
.SpaceBefore = 0
.SpaceBeforeAuto = False
.SpaceAfter = 6
.SpaceAfterAuto = False
.LineSpacingRule = wdLineSpaceSingle
.Alignment = wdAlignParagraphCenter
.WidowControl = True
.KeepWithNext = False
.KeepTogether = False
.PageBreakBefore = False
.NoLineNumber = False
.Hyphenation = True
.FirstLineIndent = InchesToPoints(0)

.OutlineLevel = wdOutlineLevelBodyText

.CharacterUnitLeftIndent = 0

.CharacterUnitRightIndent = 0

.CharacterUnitFirstLineIndent = 0

.LineUnitBefore = 0

.LineUnitAfter = 0

.MirrorIndents = False

.TextboxTightWrap = wdTightNone
End With

End Sub

10/26/2016

Administrative and course introduction 19

VBA Statements Actually Needed: 1 Line

Sub headingManual()
Selection.ParagraphFormat.SpaceAfter = 6

End Sub

Recording Macros: Additional Comments

• Benefits:
– You can use the macro code that is automatically generated in order to

learn how to do manually.

– Sometimes this is very useful if you don’t know the wording of a
command or how to access a property.

– Example (VBA program code for the previous example)

• Record the commands for the macro

• Then view the commands so you can learn how to do it manually

Sub AutoGeneratedFontChange()
Selection.Font.Bold = wdToggle

End Sub

10/26/2016

Administrative and course introduction 20

Recording Macros

• Bottom line: use it for learning “how to do” things

• Don’t:
– Just use the auto-generated code to study for the exam without creating

any code of your code

– Just hand in the auto-generated VBA code for your assignment

• While taking this course: Use the auto-generated code to
figure out how to “type the program from scratch” yourself (I
will show how to do this shortly)

• After this course is done: if ever you find your usage of Office
tedious and repetitive (multiple clicks) then you can record all
those steps into one macro!

The Visual Basic Editor

• You don’t need to familiarize yourself with every detail of the
editor in order to create VBA programs.

• Just a few key features should be sufficient

• Starting the editor:
–Because VBA programs are associated with an office application open the

editor from MS-Word

–Click the “Visual Basic” icon under “Developer”

10/26/2016

Administrative and course introduction 21

Overview Of The Important Parts Of The VBA
Editor

Save Cut, copy,
paste

Find,
replace

Undo,
redo

Run, pause,
stop (VBA
subroutine
program)

Current
location

Program
editor

Export:

Useful for
transferring or
backing up
your work

Help lookup

VBA Editor: Don’t Mix It Up With The Word Editor

10/26/2016

Administrative and course introduction 22

Defining A Program In The VBA Editor

• Format:
' Program documentation goes here (more on this later)

sub <sub-program name>()

End Sub

• Example:
' Author, version, features etc.
Sub first_example_macro_info()

MsgBox ("Congratulations! This your first computer
program")

End Sub

• Note: large VBA programs have multiple (sub) parts but for this
class you only need to define a single ‘sub’.

Instructions in the body of program (indent 4 spaces)

The ‘Sub’ Keyword

• Sub stands for ‘subroutine’ or a portion of a VBA program
Format:
Sub <subroutine name>()

<Instructions in the subroutine>

End Sub

• Example:
Sub First_Example_Macro_Info()

End Sub

• All executable VBA program statements must be inside the
subroutine

Header, start of subroutine:

• Has word ‘Sub’
• Name of subroutine
• Set of brackets

End of subroutine:

• Has ‘End Sub’

Note: all lines in between are
indented (4 spaces)

10/26/2016

Administrative and course introduction 23

The ‘Sub’ Keyword: 2

• Real world VBA programs will be broken down into multiple
‘subs’ (subroutines or program parts)

• Because this is only brief introduction into writing VBA
programs you will only have to define one subroutine for your
assignment.

VBA Examples: This Point Onwards

• Unlike the previous example you will be manually typing in the
program instructions yourself rather than automatically
recording the program as a series of steps

• Reminder: some of the early examples are meant only as a
learning/teaching tool
– They show you how to write simple VBA programs

– So they won’t yet focus on “doing useful things” yet

• Try typing them into the VBA editor or cutting and pasting
them yourself
– It’s important to “try things out for yourself”

– With programming you learn by “doing yourself” rather than by watching
someone else ‘do’

10/26/2016

Administrative and course introduction 24

First VBA Example

• Learning Objectives:
– Creating/running a VBA program

– Creating a Message Box “MsgBox”

• Reminder steps (since this is your first example)
– Start up the application (MS-Word)

– Invoke the VBA editor: Developer->Visual Basic

– If successful you should see something similar to the image

Enter your program
instructions here
(program editor)

First VBA Example (2)

• Type in or cut-and-paste the following example into the VBA
editor (see last image for location of the editor, previous slide)
– This is NOT the same as pasting it directly into MS-Word.

– Word document containing the macro: 1firstExampleMacro.docm

Sub first_example_macro_info()
MsgBox ("Congratulations! This your first computer

program")
End Sub

10/26/2016

Administrative and course introduction 25

Reminder: Running Macros

• (You must first have the ‘developer’ tab visible).

• Developer->Macros

• The single macro should be highlighted, then click ‘run’

Running VBA Programs You Have Entered (2)

• Or you can run the program right after you have entered it (in
the editor).

1. Ensure correct
program “sub” is
to be executed
(click there)

2. Press the
‘play/run’ button
or “F5”

10/26/2016

Administrative and course introduction 26

Structure Of VBA Programs: Reminder Of Important
Points

• As you just saw a program must begin
with the “sub” keyword followed by
the name of the “subroutine” (sub-
part of the program).

• It also ends with end “end sub”

• Important style requirement: The
part between the ‘sub’ and ‘end sub’
must be indented by 4 spaces (8
spaces if sub-indenting is used – next
set of notes).

sub first_example_macro()

end Sub

MsgBox(“Congrats!”)

Saving Your Macro

You can save your macro into a Word document:

1. Create a new Word document

2. Save the document as a macro-enable document (Word
document that has a macro computer program embedded
within it).

10/26/2016

Administrative and course introduction 27

Saving Your Macro (2)

3. Next you have tell Word that you want to save your macro
program inside this macro-enabled document.

– By default when you save your macros Word will select “Normal.dotm”
as the location.

• DO NOT save your macro in this document:

–You will have trouble transferring your macro to other computers

–Because “Normal.dotm” is the default template used to create some Word documents
it may result in security warnings.

Saving Your Macro (3)

– Instead: Save your macro in your current document (in the example
below it’s “Assignment4.docm”.

• Transferring this document will allow the macros to be transferred as well.

10/26/2016

Administrative and course introduction 28

Which Document Contains A Macro?

Viewing Macros

• All macros that you have created can be viewed in the VBA
macro editor:
– Macros manually entered in the editor (Message Box example)

– Macros automatically recorded (previous example: changing font to bold)

Previous
macro auto
recorded

10/26/2016

Administrative and course introduction 29

Viewing File Information

• View details: select ‘view’ in a folder

Viewing File Suffixes

• In a folder select: Tools->Folder options

• Under the ‘view’ tab uncheck ‘Hide extensions for known file
types’

10/26/2016

Administrative and course introduction 30

Transferring Your Macros (This Class)

• If you create a macro-enabled MS-Word document (file name
suffix “.docm”) then transfer the Word document itself.

Transferring Your Macros (This Class): 2

• In the 203 computer lab

• Save the macro enabled word document to your portable USB
flash drive

• OR

• Save the template document on your web disk drive

– To download files stored on web disk onto another computer:
https://webdisk.ucalgary.ca/

10/26/2016

Administrative and course introduction 31

More On Macro Security

• A macro is a computer program that is attached to another
program’s documents (e.g., MS-Word documents)

• It can supplement the program’s features by automating
repetitive tasks

• But like another computer program the instructions can either
be useful or malicious

• Security setting are specified in the MS-Office “Trust Centre”

Types Of Documents That Can Contain Macros

• You store the macros that you write for this class this way
– In a single document ‘doc-m’ document

• You can also store macros in these documents (not for this
class but important to be aware in terms of computer
security).
– Normal ‘dot-m’ template

– Custom ‘dot-m’ template

10/26/2016

Administrative and course introduction 32

Question: What Is The Security Difference?

• Opening the following documents:
– Document.docm

– Document.docx

– Document.doc

.DOCX (And .XLSX, .PPTX)

• As mentioned these types of files cannot have macros
attached to them.
– Reduced capabilities (no macros) but increased security (no macros)

• Question: Are these files with these extensions 100% safe?

10/26/2016

Administrative and course introduction 33

Message Box

• (Details of the previous example)

• Creates a popup window

• Useful for testing
– Is my program working?

–Which part is running?

• Also useful for displaying status messages about the current
state of the program

Creating A Message Box

• Format:
MsgBox ("<Message to appear>")

• Example:

MsgBox ("Congratulations! This your first computer
program")

Notes on ‘Format’:
•Italicized: you have a choice for this part
•Non-italicized: mandatory (enter it as-is)
•Don’t type in the angled brackets (used to help you visually group)

10/26/2016

Administrative and course introduction 34

VBA Visual Aids: Function Arguments

• As you type in the name of VB functions you will see visual
hints about the arguments/inputs for the function.
– Enter the function name and then a space

Function arguments

(Bold): mandatory
arguments

VBA Visual Aids: Error Information

Required argument missing

Specific
statement/instruction
causing the error (red font)

Part of program that
contains errors (yellow
highlight)

10/26/2016

Administrative and course introduction 35

Real-World Objects

• You are of course familiar with objects in the everyday world.
– These are physical entities

• Each object is described by its properties (information)

• Each object can have a set of functions associated with it
(actions)

VBA OBject

• Similar to everyday objects VBA-Objects have properties and
actions
– Properties: information that describe the object

• E.g., the name of a document, size of the document, date modified etc.

– Capabilities: actions that can be performed (sometimes referred to as
‘methods’ or ‘functions’)

• E.g., save, print, spell check etc.

10/26/2016

Administrative and course introduction 36

Common VBA Objects

• Application: the MS-Office program running (for CPSC 203
it will always be MS-Word)

• ActiveDocument

• Selection

• When enter one of these keywords in the editor followed by
the ‘dot’ you can see more information.

Take advantage of the benefits:
1. The list of properties and methods is a

useful reminder if you can’t remember
the name

2. If you don’t see the pull down then this
is clue that you entered the wrong name
for the object

Example: What Are The Three Objects

• Application:
•MS-Word

• Current Document:
•“tamj template”

• Selection
•“Foo!”

10/26/2016

Administrative and course introduction 37

Using Pre-Built Capabilities/Properties Of Objects

• Format:
<Object name>.<method or attribute name>

• Example:
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

Properties Vs. Methods/Functions

• Recall
– Property: information about an object

– Method: capabilities of an object (possible actions)

Property:
current cell

Using the
‘average()’
function

10/26/2016

Administrative and course introduction 38

Properties Vs. Methods: Appearance

Methods

Property

• Similar to functions in MS-Excel some object’s methods may
require an argument or arguments

• Examples
• ActiveDocument.CountNumberedItems
• ActiveDocument.Save

• ActiveDocument.SaveAs2("<name>")
Argument: New name of
document needed

No argument
required

More On Objects

• This is only a very brief introduction on VBA objects

• What you should now know
– The 3 common objects (application, active document, selection)

– Objects consist of attributes and methods and how to access/use them

• As the need arises you will learn more about these objects
(and perhaps others) in the next section

10/26/2016

Administrative and course introduction 39

Basic Mathematical Operators

Operation Symbol used in VBA Example

Addition + 2 + 2

Subtraction - 3 – 2

Multiplication * 10 * 10

Division / 81 / 9

Exponent ^ 2 ^ 3

Variables

• Used to temporarily store information at
location in memory

• Variables must be declared (created) before
they can be used.

• Format for declaration:
Dim <Variable name> as <Type of variable>

• Example declaration:
Dim BirthYear as Long

Image curtesy of James Tam

10/26/2016

Administrative and course introduction 40

Some Types Of Variables

Type of information
stored

VBA Name Example variable
declaration

Default Value

Whole numbers Long Dim LuckyNumber
as Long

0

Real numbers Double Dim MyWeight As
Double

0

Chararacters1 String2 Dim Name As
String

Empty string

Date3 Date Dim BirthDate As
Date

00:00:00

1) Any visible character you can type and more e.g., ‘Enter’ key
2) Each string can contain up to a maximum of 2 billion characters
3) Format: Day/month/year

Examples Of Assigning Values To Variables

Note: some types of variables requires some mechanism to
specify the type of information to be stored:
• Strings: the start and end of the string must be marked with double quotes "

• Date: the start and end of the string must be marked with the number sign #

Dim LuckyNumber As Long

LuckyNumber = 888

Dim BirthDay As Date

BirthDay = #11/01/1977#

Dim MyName As String

MyName = "James"

10/26/2016

Administrative and course introduction 41

Variables: Metaphor To Use

• Think of VBA variables like a “mailslot in memory”

• Unlike an actual mailslot computer variables can only hold one
piece of information
– Adding new information results in the old information being replaced by

the new information

www.colourbox.com

Dim num as Long num

1

num
num = 1

17
num = 17

Variables: Metaphor To Use (2)

• Also each computer variable is separate location in memory.

• Each location can hold information independently of other
locations.

• Note: This works differently than mathematical variables!

• What is the result?

Dim num1 as Long
Dim num2 as Long
num1 = 1
num2 = num1
num1 = 2

10/26/2016

Administrative and course introduction 42

MsgBox: Dislaying Mixes Of Strings And Variables

• Format:
MsgBox ("<Message1>" & <variable name>)

• Example:
Dim num as Long

num = 7

MsgBox ("num=" & num)

"num=" : A literal string
num: : contents of a variable (slot in memory)

Second Example: Basics Of Variables

• Name of the online example: 2variablesMixedOutput.docm

Sub secondExample()
Dim num1 As Long
Dim num2 As Long
num1 = 1
num2 = num1
MsgBox ("num1=" & num1 & ", " & "num2=" & num2)
num1 = 2
MsgBox ("num1=" & num1 & ", " & "num2=" & num2)

End Sub

10/26/2016

Administrative and course introduction 43

Option Explicit

• It’s not mandatory to include for your program “to work”.

• But including it at the very start of your program before the
‘sub’ and subroutine name will save you many headaches!

Third VBA Example

• Learning Objectives:
– Using variables

– Using mathematical operators

10/26/2016

Administrative and course introduction 44

Third VBA Example (2)

Word document containing the macro: 3types.docm

Sub thirdExample()

Dim RealNumber As Double

Dim WholeNumber As Integer

RealNumber = 1 / 3

MsgBox (RealNumber)

WholeNumber = 5 / 10

MsgBox (WholeNumber)

WholeNumber = 6 / 10

MsgBox (WholeNumber)

End Sub

JT’s note: Anything over 0.5 is rounded up

Student Exercise #1

• What would appear as output (MsgBox) when the following
VBA macro program was executed

Sub exercise1()
Dim num1 As Long
num1 = 1
MsgBox (num1)
num1 = num1 + 1
MsgBox (num1)

End Sub

10/26/2016

Administrative and course introduction 45

Student Exercise #2

• What would appear as output (MsgBox) when the following
VBA macro program was executed
Sub exercise2()

Dim num1 As Long
Dim num2 As Double

num1 = 10
num2 = 10.5

MsgBox (num1 & "---" & num2)

num1 = num2 + 10
num2 = num1 * 2 / 3
MsgBox (num1 & "---" & num2)

End Sub

Variable Naming Conventions

• Language requirements:
– Rules built into the Visual Basic (recall VBA is essentially Visual Basic

tied to an MS-Office Application) language.

– Somewhat analogous to the grammar of a ‘human’ language.

– If the rules are violated then the typical outcome is the program
cannot execute.

• Style requirements:
– Approaches for producing a well written program.

– (The real life analogy is that something written in a human language
may follow the grammar but still be poorly written).

– If style requirements are not followed then the program can execute
but there may be other problems (e.g., it is difficult to understand
because it’s overly long and complex - more on this during the term).

10/26/2016

Administrative and course introduction 46

Naming Variables: VBA Language Requirements

• Names must begin with an alphabetic character
– OK: name1 Not OK: 1name

• Names cannot contain a space
– OK: firstName Not OK: first name

• Names cannot use special characters anywhere in the name
– Punctuation: ! ? .

– Mathematical operators: + - * / ^

– Comparison operators: < <= > >= <> =

Naming Variables: Style Conventions

1. Style requirement (all
languages): The name should be
meaningful.

2. Style requirement (from the
Microsoft Developer Network1):

a) Choose easily readable
identifier names

b) Favor readability over

brevity.

Examples
#1:
age (yes)
x, y (no)

HorizontalAlignment (yes)
AlignmentHorizontal (no)

CanScrollHorizontally (yes)
ScrollableX (no)

1 http://msdn.microsoft.com/en-us/library/ms229045.aspx

10/26/2016

Administrative and course introduction 47

Naming Variables: Style Conventions (2)

3. Style requirement: Variable
names should generally be all
lower case except perhaps for
the first letter (see next point for
the exception).

4. Style requirement: For names
composed of multiple words
separate each word by
capitalizing the first letter of
each word (save for the first
word) or by using an underscore.
(Either approach is acceptable
but don’t mix and match.)

5. Avoid using keywords as names
(next slide)

Examples
#3:
age, height, weight (yes)
HEIGHT (no)

#4
firstName, last_name
(yes to either approach)

Some Common Visual Basic Keywords1

And Boolean Call Case Catch Continue

Date Decimal Default Dim Do Double

Each Else End Erase Error Event

Exit False Finally For Friend Function

Get Global Handles If In Inherits

Integer Interface Is Let Lib Like

Long Loop Me Mod Module Next

Not Nothing Of On Operator Option

Optional Or Out Overrides Partial Private

Property Protected Public Resume Return Select

Set Shadows Short Single Static Step

Stop String Sub Then Throw To

True Try Using Variant When While

Widening With

1 The full list can be found on the MSDN http://msdn.microsoft.com/en-us/library/dd409611.aspx

10/26/2016

Administrative and course introduction 48

Variable Naming Conventions: Bottom Line

• Both the language and style requirements should be followed
when declaring your variables.

Obtrusive Popup Windows/Messages (If There Is
Time)

• Great! I’ve got the info that I need.

10/26/2016

Administrative and course introduction 49

Obtrusive Popup Windows/Messages (If There Is
Time)

• Hey I was reading that

Alternate To Using Popup Messages (If There Is Time)

10/26/2016

Administrative and course introduction 50

An Alternate To The MsgBox: The Title Bar (If There Is
Time)

• Finding the MsgBox popups too obtrusive?

• You can display messages in a more subtle fashion by changing
the title bar.
Before

After

Changing The Title Bar (If There Is Time)

• Format:
ActiveDocument.ActiveWindow.Caption =

"<New text for the title bar>"

• Word document containing the macro: 4titleBar.docm

Sub firstTitleBarExample()
ActiveDocument.ActiveWindow.Caption = "A NEW TITLE!"

End Sub

10/26/2016

Administrative and course introduction 51

Comparison: Popups Vs. Status Messages (If There Is
Time)

• Popup dialogs:
– Often used for important messages that you don’t want the user to miss

– Overuse can simply result in the user “clicking past” the dialog without
reading them

• Status messages:
– More subtle presentation of information.

– Easy to miss.

– Multiple updates result in only the last change appearing to the user

Sub secondTitleBarExample()
Dim num1 As Integer
Dim num2 As Integer

num1 = 666
num2 = 888
ActiveDocument.ActiveWindow.Caption = num1
ActiveDocument.ActiveWindow.Caption = num2

End Sub

Missing The Message (If There Is Time)

Word document containing the macro: 5titleBarV2.docm

10/26/2016

Administrative and course introduction 52

Getting User Input

• A simple approach is to use an Input Box

• Format:
<Variable name> = InputBox(<"Prompt">, <"Title bar">)

• Example:
Name = InputBox("What is your name"), "Getting Personal")

• Note: only the string for the prompt is mandatory.

• If the title bar information is omitted then the default is the
application name (“Microsoft Word”)

Example: InputBox

• Learning: getting user input with an InputBox

• Word document containing the macro:
6inputBox.docm

Sub InputExample()

Dim Age As Integer

Dim Name As String

Dim DogAge As Integer

Name = InputBox("What is your name", "Getting personal: name")

Age = InputBox("What is your age", "Getting even more personal: age")

DogAge = Age * 7

MsgBox (Name & " your age in dog years is " & DogAge)

End Sub

Note: there are two input boxes, one that prompts for the name and the other
for the age. Each is given a self-descriptive name to distinguish them (an
example of good programming style – more on this shortly)

10/26/2016

Administrative and course introduction 53

The VBA Debugger (If There Is Time)

• Debuggers can be used to help find errors in your program

• Setting up breakpoints
– Points in the program that will ‘pause’ until you proceed to the next

step

– Useful in different situations

• The program ‘crashes’ but you don’t know where it is occurring

– Pause before the crash

• An incorrect result is produced but where is the calculation wrong

• Set up breakpoints
– Click in the left margin

The VBA Debugger (2) (If There Is Time)

• Multiple breakpoints

• Program pauses when breakpoints are reached
–The contents of variables can be displayed at that point in the program

10/26/2016

Administrative and course introduction 54

The VBA Debugger (3) (If There Is Time)

• Because the VBA debugger is interactive it’s best to see the
results live in “real time”

• So you will see more on the debugger in tutorial

Break Points: Final Note (If There Is Time)

• They only meant as a temporary mechanism for finding the
errors in your program.
– (Having them ‘permanently’ included with the program would be a

nuisance because it will pause at each break point).

• Consequently break points are not saved either with: the
document, template or the VBA program

10/26/2016

Administrative and course introduction 55

Review: Lookup Tables (For Constants)

• Excel: Lookup tables are used to define values that do not
typically change but are referred to in multiple parts of a
spreadsheet.

Named Constants

• They are similar to variables: a memory location that’s been
given a name.

• Unlike variables their contents cannot change.

• The naming conventions for choosing variable names generally
apply to constants but constants should be all UPPER CASE.
(You can separate multiple words with an underscore).
–This isn’t a usual Visual Basic convention but since it’s very common with

most other languages so you will be required to follow it for this class.

• Example CONST PI = 3.14

–PI = Named constant, 3.14 = Unnamed constant

• They are capitalized so the reader of the program can quickly
distinguish them from variables.

10/26/2016

Administrative and course introduction 56

Declaring Named Constants

• Format:
Const <Name of constant> = <Expression>1

JT: it’s preceded by the keyword ‘const’ to indicate that it is a

constant

• Example:
Sub ConstantExample()

Const PI = 3.14

End Sub

1 The expression can be any mathematical operation but can’t be the result of a function call

Why Use Named Constants

• They can make your programs easier to read and understand

• Example:
Income = 315 * 80

Vs.

Income = WORKING_DAYS_PER_YEAR * DAILY_PAY

No 

Yes 

10/26/2016

Administrative and course introduction 57

Predefined Constants: MS-Word

• Microsoft uses their owning naming convention

• Example:
– wdPromptToSaveChanges

• Usage:
– ActiveDocument.Close(wdPromptToSaveChanges)

Closing Documents

• Default action when closing a MS-Word document that has
been modified

• VBA code to close a document in this fashion:
ActiveDocument.Close (wdPromptToSaveChanges)

Pre-defined constant

10/26/2016

Administrative and course introduction 58

More Pre-Defined Constants: Closing Documents

• Word document containing the macro:
“7closingActions.docm”

Sub ClosingActions()

ActiveDocument.Close (<Constant for closing action>)

End Sub

'Choose one constant
wdPromptToSaveChanges
wdDoNotSaveChanges
wdSaveChanges

Formatting Text

• Allows formatting changes to be applied to the text in a Word
document:
– Examples: bold, underline, font type, font size

• Some approaches:
– Apply the formatting changes to the entire document

– Apply the formatting changes to select parts of the document

10/26/2016

Administrative and course introduction 59

Formatting An Entire Document

• You first need to indicate the document to be formatted

• This can be done through the ‘ActiveDocument’ object

• Then choose the ‘Select’ method of that document.
– Review: it’s a method and not a property because it applies an action:

select = selecting the text of the entire document

Active Document: Which One?

• Remember: the active document is the one you are currently
working on.

• When writing VBA programs this can be tricky to determine.

• So it’s best to work with only a single document at a time when
writing your programs.

10/26/2016

Administrative and course introduction 60

Formatting Text: An Example

• Suppose you want to format a document in the following way

• Entire document
– Font = Calibri

Formatting: Entire Document

• As mentioned the entire document can be selected.

• Now for the ‘selected text’ (in this case it’s the whole
document) access the ‘Font’ property and the ‘Name’
property of that font and give it the desired name.

• Word document containing the macro:
8formattingEntireDocument.docm

ActiveDocument.Select

Selection.Font.Name = "Calibri"

Sub formattingEntireDocument()
ActiveDocument.Select
Selection.Font.Name = "Calibri"

End Sub

10/26/2016

Administrative and course introduction 61

Formatting The Text Currently Selected

• This can be done through the ‘Selection’ object

• This object accesses the text in a document that has been
selected

Changing Selected Text

• Word document containing the macro: 9cutAndPaste.docm
– Learning concepts: editing selected text, cutting and pasting text, using

constants

Sub cutAndPaste()
Selection.Expand
Selection.Copy
Selection.MoveRight
Selection.PasteAndFormat
(wdFormatOriginalFormatting)

End Sub

• A predefined constant
• Another is

“wdFormatPlainText”

10/26/2016

Administrative and course introduction 62

Student Exercise #3

• What would happen to the following document…

• …if the following macro was executed?

Sub exercise3()
Selection.Expand
Selection.Copy
Selection.MoveRight
Selection.PasteAndFormat (wdFormatPlainText)

End Sub

Formatting Selected Text: Multiple Changes

• Desired formatting:
– Font size = 14 point

– Bold

– Underline

– Center the heading

– 6 point spacing after the heading

• Word document name:
10formattingSelectedTextMultiple.docm

Sub formattingHeadings()
Selection.Font.Size = 14
Selection.Font.Bold = True
Selection.Font.Underline = True
Selection.ParagraphFormat.Alignment =
wdAlignParagraphCenter

Selection.ParagraphFormat.SpaceAfter = 6
End Sub

10/26/2016

Administrative and course introduction 63

Effect

• Before:

• After

Formatting Selected Paragraphs

• Desired formatting:
– Font size = 10 point

– Left and right margins indented by 0.2 inches

• Word document: 11formattingSelectedParagraphs.docm
Sub formattingParagraphs()

Selection.Font.Size = 10
Selection.Font.Bold = True
Selection.ParagraphFormat.LeftIndent = InchesToPoints(0.2)
Selection.ParagraphFormat.RightIndent = InchesToPoints(0.2)

End Sub

10/26/2016

Administrative and course introduction 64

What’s The Difference?

‘ Part of the example just covered
Selection.Font.Bold = True

‘ First example
Selection.Font.Bold = wdToggle

Advanced Concept: What If there Is No Selection?

• The VBA program attempts to format the currently selected
text but there is ‘no’ selection.

• (Rhetorical questions - for now)
– What will happen?

– What modifications can be made to the program to handle this case?

10/26/2016

Administrative and course introduction 65

Formatting: Recap

• Formatting the entire document: access the
ActiveDocument object

• Formatting the currently selected text: access the Selection
object

• Then select the property of the selection that you wish to
set/change

• Example: changing font of selected text
– Now for the ‘selected text’ (in this case it’s the whole document) access

the ‘Font’ property and the ‘Name’ property of that font and give it the
desired name.

ActiveDocument.Select

Selection.Font = Calibri

Printing: A Single Document

• Printing a single document (currently opened, active MS-Word
document)

• Word document containing the macro example:
“12singleDocumentPrint.docm”

Sub PrintSingleDocument()

ActiveDocument.PrintOut

End Subs

10/26/2016

Administrative and course introduction 66

Program Documentation

• Your VBA assignment submission must include identification
information:
–Full name

–Student identification number

–Tutorial number

–List the program features (from the assignment description) and clearly
indicate if the feature was completed or not completed.

• DON’T just enter this information into your program
instructions

Instructions for the
computer

(Computer): problem, I don’t
know how to “James Tam”

Program Documentation (2)

• You must ‘mark’ this information so it doesn’t cause an error
– The marking will indicate to the VBA translation mechanism that the line

is for the reader of the program and not to be translated and executed

– The marking is done with the single quote '

• Format:
' <Documentation>

• Example:
' Author: James Tam

• No error: Everything after the quote until the end of the line
will not be translated into machine language/binary

• That means documentation doesn’t have to be a valid and
executable instruction

10/26/2016

Administrative and course introduction 67

Program Documentation (3)

• Contact information should be located before your program

• Before the ‘sub’ keyword
Documentation:
marked in red

Program Documentation (4)

• Program features (this will be worth many marks)

• Assignment description

• Program documentation
– ' Author: James Tam ID: 123456
– ' Version: Nov 2, 2015
– ' Tutorial: 99
– ' PROGRAM FEATURES
– ' Word search and replace: completed
– ' Style search and replace: not completed
– etc

10/26/2016

Administrative and course introduction 68

Program Documentation (5)

• Where?

• Right with your program before the ‘option explicit’

A Source Of Help

• The macro recorder!

• Although you are writing your programs manually (typing them
in) you can use the macro recorder to help you determine
which objects, methods and properties are needed for a
particular task.

• Example (from toggling bold and italic font):
Selection.Font.Italic = wdToggle

Selection.Font.Bold = wdToggle

10/26/2016

Administrative and course introduction 69

Recorded Macros

• Sometimes the auto generated code is too complicated to be
useful
– Toggle bold, italic, printed document

Sub Macro3()
Selection.Font.Bold = wdToggle
Selection.Font.Italic = wdToggle
Application.PrintOut FileName:="",
Range:=wdPrintAllDocument, Item:= _
wdPrintDocumentWithMarkup, Copies:=1, Pages:="",
PageType:= _
wdPrintAllPages, Collate:=True, Background:=True,

PrintToFile:=False, _
PrintZoomColumn:=0, PrintZoomRow:=0,

PrintZoomPaperWidth:=0, _
PrintZoomPaperHeight:=0

End Sub

After This Section You Should Know

• The history and background behind VBA

• How to copy and run the pre-created lecture examples

• How to create and execute simple VBA macros
– Automatically recording macros

– Manually entering programs into the VB editor yourself

• How to create/use a Message Box “MsgBox”

• How the VB editor identifies programming errors

• What is a VB object, how to use the properties and methods of
objects

• How to use basic mathematical operators in VB expressions

• How to create and use variables

• How to use the title bar to display information

10/26/2016

Administrative and course introduction 70

After This Section You Should Know (2)

• What is a named constant, why use them (benefits)

• What is a predefined constant and what are some useful,
commonly used predefined constants

• Naming conventions for variables and constants

• What are commonly used variable ‘types’ in VB

• How to get user input with an Input Box “InputBox”

• How/why use the VB debugger

• Common formatting effects that can be applied to an entire
document or selected parts

• How to create program documentation (as well contact
information that should be included in documentation)

After This Section You Should Now Know (3)

• The security settings in the MS-Office “Trust Center”

• How different types of MS-Word documents have different
levels of security

• How to print the currently active Word document using a
macro

10/26/2016

Administrative and course introduction 71

Copyright Notice

• Unless otherwise specfied, all images were produced by the
author (James Tam).

