JETSTRIO. WRPNPEPSTS SRS

498 Chapter 10 Object-Oriented Programming: Polymorphism

Allow the user to specify (via an input dialog) the number of shapes to generate. The program
will then generate and display the shapes along with a status bar that informs the user how many of
each shape were created.

10.2 (Drawing Application Modification) In Exercise 10.1, you created a MyShape hierarchy in
which classes MyLine, MyOval and MyRectangle extend MyShape directly. If your hierarchy was prop-
erly designed, you should be able 1o see the similarities berween the MyOval and MyRectangle classes.
Redesign and reimplement the code for the Myoval and MyRectangle classes to “factor out” the com-
mon features into the abstract class MyBoundedShape to produce the hierarchy in Fig. 10.18.

Class MyBoundedShape should declare two constructors that mimic the constructors of class
MyShape, only with an added parameter 1o set whether the shape is filled. Class MyBoundedShape
should also declare ger and ser methods for manipulating the filled flag and methods that calculate the
upper-left x-coordinate, upper-left y-coordinate, width and height. Remember, the values needed to
draw an oval or a rectangle can be calculated from two (x, y) coordinates. If designed properly, the
new MyOval and MyRectangle classes should each have rwo constructors and a draw method.

0.9 (Optional) Software Engineering Case Study:
Incorporating Inheritance into the ATM System

We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create
an inheritance hierarchy to model similar (yet not identical) classes in a2 more elegant and
efficient manner. We then modify our class diagram to incorporate the new inheritance
relationships. Finally, we demonstrate how our updated design is translated into Java code.

In Section 3.10, we encountered the problem of representing a financial transaction
in the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—
to represent the transactions that the ATM system can perform. Figure 10.19 shows the
attributes and operations of classes BalanceInquiry, withdrawal and Deposit. Note that
these classes have one artribute (accountNumber) and one operation (execute) in
common. Each class requires attribute accountNumber to specify the account to which the

- Java.tang.Obect.
?
_Myshape
/ \
| Mtine . MyBoundedShape
/ \
| Mova MyRectangle

LIRS U

Fig. 10.18 | MyShape hierarchy with MyBoundedShape.

10.9 Incorporating Inheritance into the ATM System 499

ey

S0 Bilancelnquiny ¢
- aécountNumbet : Integer - i
e). ' L o
S LR R RUETERBI PR
o ;-,}7‘?}{?.“ et L T e .1 e R AR
“T Withdrawal, a0 ' Deposit

- accountNumber : Integer | " accountNumber : Integer:

amount:Double . . amount:Double
roccutel) C Trexecutel). L el
.-t.e-,-x-m ..EE.(L-;.» I A R L L) v e tuts Wi E L RIRARDIIACE WO

Fig. 10.19 | Attributes and operations of classes Bal anceInquiry, Withdrawal and
Deposit.

transaction applies. Each class contains operation execute, which the ATM invokes to per-
form a transaction. Clearly, BalanceInquiry, Withd rawa) and Deposit represent fypes of
transactions. Figure 10.19 reveals commonality among the transaction classes, so using
inherirance to factor out the common features scems appropriate for designing classes Bal-
anceInquiry, Withdrawal and Deposit. We place the common functionality in a super-
class, Transaction, that classes BalanceInquiry, Withdrawal and Deposit extend.

The UML specifies a relationship called a generalization to model inheritance.
Figure 10.20 is the class diagram that models the generalization of superclass Transaction
and subclasses BalanceInquiry, Withdrawal and Deposit. The arrows with triangular
hollow arrowheads indicate that classes Bal ancelnquiry, Withdrawal and Deposit extend
class Transaction. Class Transaction is said to be a generalization of classes BalancelIn-
quiry, Withdrawal and Deposit. Class BalanceInquiry, withdrawal and Deposit are
said 1o be specializations of class Transaction.

Classes BalanceInquiry, Withdrawal and Deposit share integer ateribute account-
Number, so we factor out this common attribute and place it in superclass Transaction.

Transaction

~ accountNumbes : Integer)
+ getAccountNumber()- S

. Balancelnquiry’ © 7 Withdrswal {0 Deposit it
' : "~ amount : Double -~ _amount: Double © 0 *
+ execute() , +execute(‘~)v “+eoeute().. ' '

R R ST AL S A SLep e et ARYT e E ST ke gr Y ET THOREL

Fig. 10.20 | Class diagram modeling generalization of superclass Transaction and
subclasses BalanceInquiry, Withdrawal and Deposit. Note that abstract class names (e.g..
Transaction) and method names (e.g.. execute in class Transaction) appear in italics.

500 Chapter 10 Object-Oriented Programming: Polymorphism

We no longer list accountNumber in the second compartment of each subclass, because the
three subclasses inherit this attribute from Transaction, Recall, however, that subclasses
cannot access private attributes of a superclass. We therefore include public method
getAccountNumber in class Transaction. Each subclass will inherit this method, enabling
the subclass to access its accountNumber as needed to execute a transaction.

According to Fig. 10.19, classes Ba1 ancelnquiry, Withdrawal and Deposit also share
operation execute, so we decided that superclass Transaction should concain public
method execute. However, it does not make sense to implement execute in class Trans-
action, because the functionality that this method provides depends on the type of the
actual transaction. We therefore declare method execute as abstract in superclass Trans-
action. Any class that contains at least one abstract method must also be declared
abstract. This forces any subclass of Transaction that must be a concrete class (i.e., Bal-
ancelnquiry, Withdrawal and Deposit) to implement method execute. The UML
requires that we place abstract class names (and abstract methods) in italics, so Transac-
tion and its method execute appear in italics in Fig. 10.20. Note that method execute
is not italicized in subclasses Bal ancelnquiry, Withdrawal and Deposit. Each subclass
overrides superclass Transaction’s execute method with a concrete implementation that
performs the steps appropriate for completing that type of transaction. Note that
Fig. 10.20 includes operation execute in the third compartment of classes BalanceIn-
quiry, Withdrawal and Deposit, because each class has a difterent concrete implemenia-
tion of the overridden method. .

Incorporating inheritance provides the ATM with an clegant way to execute all transac-
tions “in the general.” For example, suppose a user chooses to perform a balance inquiry.
The ATM sets a Transaction reference to a new object of class BatanceInquiry. When the
ATM uses its Transaction reference to invoke method execute, Balancelnquiry’s version
of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish
to create a new transaction type (e.g., funds transfer or bill payment), we would just create
an additional Transaction subclass that overrides the execute method with a version of
the method appropriate for executing the new transaction type. We would need to make
only minimal changes to the system code to allow users to chgose the new transaction type
from the main menu and for the ATM to instantiate and execute objects of the new subclass.
The ATM could execute transactions of the new type using the current code, because it exe-
cutes all transactions polymorphically using a general Transaction reference.

As you learned earlier in the chapter, an abstract class like Transaction is one for
which the programmer never intends to instantiare objects. An abstract class simply
declares common artributes and behaviors of its subclasses in an inheritance hierarchy.
Class Transaction defines the concept of what it means to be a transaction that has an
account number and executes. You may wonder why we bother to include abstract
method execute in class Transaction if it lacks a concrete implementation. Conceptually,
we include chis method because it corresponds to the defining behavior of all transac-
tions—executing. Technically, we must include method execute in superclass Transac-
tion so thac the ATM (or any other class) can polymorphically invoke each subclass’s
overridden version of this method through a Transaction reference. Also, from a sofeware
engincering perspective, including an abstract method in a superclass forces the imple-
mentor of the subclasses to override that methed with concrete implementations in the

10.9 incorporating Inheritance into the ATM System 501

subclasses, or else the subclasses, too, will be abstract, preventing objects of those subclasses
from being instantiated.

Subclasses BalanceInguiry, Withdrawal and Deposit inherit attribute accountNumber
from superclass Transaction, but classes Withdrawa) and Deposit contain the additional
attribure amount that distinguishes them from class BalanceInquiry. Classes Withdrawal
and Deposit require this additional attribute 1o store the amount of money that the user
wishes to withdraw or deposit. Class BalanceInquiry has no need for such an atcribute and
requires only an account number to execute. Even though two of the three Transaction sub-
classes share this attribute, we do not place it in superclass Transaction—we place only fea-
cures common to all the subclasses in the superclass, otherwise subclasses could inherit
attributes (and methods) that they do not need and should not have.

Figure 10.21 presents an updated class diagram of our model that incorporates inher-
itance and introduces class Transaction. We model an association between class ATM and
class Transaction to show that the ATM, at any given moment, is either executing a trans-
action or it is not (i.e., zero or one objects of type Transaction exist in the system at a
time). Because a Withdrawal is a type of Transaction, we no longer draw an association
line directly between class ATM and class Withdrawal. Subclass Wi thdrawa) inherits super-
class Transaction’s association with class ATM. Subclasses BalanceInquiry and Deposit

" ‘:""*"'"{l | 3

X
Y et Y | ..
: ot Screen - B
Bt e ommdt S 4
' | A
| & k |
0.1
s i : sactio :

R T ' Executes B> '
BESRIEARTE TS 2 oo I 0.1 A.-Tvv«.,-:_:n.-;-

Authenticates user against

|
AL e DDA s Ty 7]
- BankDatabsse < —
iz are: it e e Accesses/modifies an
account balance through

Contains

Yo

.

PrinE e W

Fig. 10.21 | Class diagram of the ATM system {incorporating inheritance). Note that
abstract class names (e.g.. Transaction) appear in italics.

502 Chapter 10 Object-Oriented Programming: Polymorphism

inherit this association, too, so the previously omitted associations between ATM and classes
BalanceInquiry and Deposit no longer exist either.

We also add an association between class Transaction and the BankDatabase
(Fig. 10.21). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Because each Transaction subclass inherits this refer
ence, we no longer model the association between class Wi thdrawal and the BankData-
base. Similarly, the previously omitted associations berween the BankDatabase and classes
BalanceInguiry and Deposit no longer exist,

We show an association between class Transaction and the Screen. All Transac-
tions display output to the user via the Screen. Thus, we no longer include the association
previously modeled berween Withdrawal and the Screen, although Withdrawal still par-
ticipates in associations with the CashDi spenser and the Keypad. Qur class diagram incor-
porating inheritance also models Deposit and BalanceInqui ry. We show associations
between Deposit and both the DepositSlot and the Keypad. Note that class BalancelIn-
quiry takes part in no associations other than those inherited from class Transaction—a
BalanceInquiry needs to interact only with the BankDatabase and with the Screen,

The class diagram of Fig. 8.24 showed attributes and operations with visibility
markers. Now we present a modified class diagram that incorporates inheritance in
Fig. 10.22. This abbreviated diagram does not show inheritance relationships, but instead
shows the actributes and methods after we have employed inheritance in our system. To
save space, as we did in Fig, 4.24, we do not include those attributes shown by associations
in Fig. 10.21—we do, however, include them in the Java implementation in Appendix J.
We also omit all operation parameters, as we did in Fig. 8.24—incorporating inheritance
does not affect the parameters already modeled in Fig. 6.22-Fig. 6.25.

@Software Engineering Observation 10.12

A complete class diagram shows all the associations among classes and all the attributes and
operations for each class. When the number of class attributes, methods and associations is
substantial (as in Fig. 10.21 and Fig. 10.22), a good practice that promotes readability is to
divide this information between two class diagrams—one focusing on associations and the other
on attributes and methods,

Implementing the ATM System Design (Incorporating Inberitance))
In Section 8.19, we began implementing the ATM system design in Java code. We now med-
ify our implementation to incorporate inheritance, using class Wi thdrawal as an example,

1. If a class A is a generalization of class B, then class B extends class A in the class
declaration. For example, abstract superclass Transaction is a generalization of
class wi thdrawal. Figure 10.23 contains the shell of class Wi thdrawal containing
the appropriate class declaration.

2. If class A is an abstract class and class B is a subclass of class A, then class B must im-
plement the abstract methods of class A if class B is to be a concrete class. For exam-
ple, class Transaction contains abstract method execute, so class Withdrawal
must implement this method if we want to instantiate a Withdrawal object.
Figure 10.24 is the Java code for class Wi thdrawal from Fig. 10.21 and Fig, 10.22.
Class withdrawal inherits field accountNumber from superclass Transaction, so
Withdrawal does not need to declare this field. Class Wi thdrawa1 also inherits ref-
erences to the Screen and the BankDatabase from jts superclass Transaction, so

10.9 Incorporating Inheritance into the ATM System 503

£ e s ey e e

TATML,

T userPuthenticated : Boofean = false ' <'aceountKlurber Inté
T T e A e piinegern e
ot © "= availableBatarice - Double

G mlBalanec Dauble

e validatsPING): Booles
o+ getPvalbleBalance(): Dout
- |4+ getTotalBalance() : Doubl

ity o

p- S R R T ¥ debit() ’}“r Ey g

o i Y BACTAEEE S A R R

" displayNesiamel)

Ak

‘.J:zu:.si"!r-}:a:\:.;-_-;itmmr: -Jr:‘"‘r\,‘“:-‘ﬂ"v;:l::r;'nf'h;:nfi"i‘ + man‘i . =

) e s e PR AR X]

t= dmount : Double :

P A T Es MU Tt WL Y ‘+ d‘lswmsh‘) o

e + isSufficicntCashAvatabiteL} Bool
L {77 BankDutabage - - 1 el

4 authenticateUser() : Boolean” .-
4 getAvaitableBalance() : Double - ,
"4 getTotalBatance() : Double E
doudt)
- debit()

Pikiptwaioi SOUEPSTPVISPIRMAES I IIE SRS -

Fig. 10.22 | Class diagram with attributes and operations (incorporating inheritance). Note
that abstract class names (e.g.. Transaction) and method names (e.g.. execute in class
Transaction) appear in italics.

we do not include these references in our code. Figure 10.22 specifies attribute
amount and operation execute for class Withdrawal. Line 6 of Fig. 10.24 declares
4 field for attribute amount. Lines 16-18 declare the shell of a method for operation
execute. Recall that subclass Withdrawal must provide a concrete implementation
of the abstract method execute in superclass Transaction. The keypad and
cashDispenser references (lines 7-8) are fields derived from Wi thdrawal’s associ-
ations in Fig. 10.21. [Note: The constructor in the complete working version of
this class will initialize these references to actual objects.]

504 Chapter 10 Object-Oriented Programming: Polymorphism

[Class witndranal represents an A1V wothdranad Tranvact 2on
2 public class Withdrawal extends Transaction

3 f

4} o0 oene ciase wmithdrawal

Fig. 10.23 | Java code for shell of class Wi thdrawal.

! owithdrawat. tava

2 o Leneraved using the class diagrams in fig. 16,21 and Fig. 16.2¢
> public class Withdrawal extends Transaction

e {

s Tattributes

6 private double amount; // amount te withdraw

7 private Keypad keypad; /s reference t¢ keypad

B private CashDispenser cashDispenser; /. reference to cash dispenser
9
10 Joneargument constructor

3] public Withdrawal()

12 {

13 } /7 end no-argument Withdriwal constructor

19

i5 S0 method overriding execute

] public void execute()

17 {

i } 7/ end method execute

19 3} 7/ end class Withdrawal

Fig. 10.24 | Java code for class Wi thdrawal based on Fig. 10.21 and Fig. 10.22.

-Software Engineering Observation 10.13

Several UML modeling tools convert UML-based designs into Java code and can speed the
implementation process considerably. For more information on these tools, refer to the Interner
and Web Resources listed ar the end of Section 2.9.

Congratulations on completing the design portion of the case study! This concludes
our object-oriented design of the ATM system. We completely implement the ATM
system in 670 lines of Java code in Appendix]. We recommend that you carefully read the
code and its description. The code is abundantly commented and precisely follows the
design with which you are now familiar. The accompanying description is carefully
written 1o guide your understanding of the implementation based on the UML design.

Mastering this code is a wonderful culminating accomplishment after studying
Chapters 1-8.

Software Engineering Case Study Self-Review Exercises

10.1 The UML uses an arrow with a to indicate a generalization relationship.
a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

