
2/2/2015

Advanced Java concepts 1

Advanced Java Programming

After mastering the basics of Java
you will now learn more complex but
important programming concepts as
implemented in Java.

James Tam

Review: Previous Class

• What you have learned in your prerequisite class: some
variables directly contain data:
num1 = 12

num2 = 3.5;

ch = 'a';

• What you may have learned your perquisite class:
some variables ‘refer’ to other variables.
list = []

list = [1,2,3]

2/2/2015

Advanced Java concepts 2

James Tam

Review: This Class

• In Java when you use objects and arrays there are two things
involved:
– Reference

– Object (or array)

• Example with an object
Person charlie; // Creates reference to object

charlie = new Person(“Sheen”); // Creates object

• Example with an array
double [] salaries; // Creates reference to array

salaries = new double[100]; // Creates array

James Tam

Addresses And References

• Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human
memory)

• Think of the delivery address as something that is a ‘reference’
to the location that you wish to reach.
– Lose the reference (electronic, paper, memory) and you can’t ‘access’

(go to) the desired location.

121 122 123
123

???

Reference =

123

2/2/2015

Advanced Java concepts 3

James Tam

Adressesses And References

• A reference to an array does not directly contain the contents
of a string
– Instead the reference contains the address (“refers to”) of the array

James Tam

Recap: Variables

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
– Note however that each location is also numbered!

Image: Curtesy of Rob Kremer

2/2/2015

Advanced Java concepts 4

James Tam

References And Objects

• Full example under:
“/home/219/examples/advanced/1shallowDeep/0referenceExamples”

public class Person

{

 private String name;

 public Person() { name = "none"; }

 public Person(String newName) { setName(newName);

 }

 public String getName() { return(name); }

 public void setName(String newName) {

 name = newName;

 }

}

James Tam

References And Objects (2)

• In main():

 Person bart;
 Person lisa;

 bart = new Person("bart");

 System.out.println("Bart object name: " + bart.getName());

 lisa = bart;

 bart = new Person("lisa");

 System.out.println("Bart object name: " + bart.getName());

 System.out.println("Lisa object name: " + lisa.getName());

2/2/2015

Advanced Java concepts 5

James Tam

References And Objects (3)

• What happened?
 Person bart;

 Person lisa;

 bart = new Person("bart");

 lisa = bart;

 bart = new Person("lisa");

lisa

Address = 200

(Person object)

“lisa”

@ = 100

bart @ = 100

@ = 200

Address = 100

(Person object)

“bart”

James Tam

References And Objects (4)

 Person bart;

 Person lisa;

 bart = new Person("bart");

 lisa = bart;

 bart = new Person("lisa");

Note:

• The object and the reference to the object are separate e.g., ‘bart’
originally referenced the ‘bart object’ later it referenced the ‘lisa
object’

• The only way to access the object is through the reference.

• These same points applies for all references (arrays included)

2/2/2015

Advanced Java concepts 6

James Tam

Shallow Copy Vs. Deep Copies

• Shallow copy (new term, concept should be review)

– Copy the address from one reference into another reference

– Both references point to the same location in memory

A shortcut (‘link’ in

UNIX) is similar to a

shallow copy.

Multiple things that

refer to the same

item (document)

James Tam

Shallow Copy Vs. Deep Copies (2)

• Shallow copy, full example under:
/home/219/examples/advanced/1shallowDeep

mary

bob Age 12 66

Person mary = new Person(21);
Person bob = new Person(12);
System.out.println(mary.age + " " +
 bob.age);
mary = bob; // Shallow;
bob.age = 66;
System.out.println(mary.age + " " +
 bob.age);

Age 21

Memory
leak

2/2/2015

Advanced Java concepts 7

James Tam

Shallow Copy Vs. Deep Copies (3)

Making an actual

physical copy is

similar to a deep

copy.

• Deep copy (new term, concept should be review)

– Don’t copy addresses stored in the references

– Instead the data referred to by the references are copied

– After the copy each reference still refers to a different address (data
variable)

James Tam

Shallow Copy Vs. Deep Copies (4)

• Deep copy, full example under:
/home/219/examples/advanced/1shallowDeep

 // Mary still 66
bob = new Person(77);
mary.age = bob.age; // Deep
bob.age = 144;
System.out.println(mary.age + " " +
 bob.age);

mary Age 66

bob Age 77 144

77

2/2/2015

Advanced Java concepts 8

James Tam

Methods Of Parameter Passing

• Pass by value
– The data stored (the “value” stored) in the parameter is copied

• Pass by reference
– Pass the address of the parameter

– This allows references to the parameter inside the method (the method
has a “reference” to the original parameter).

James Tam

Passing Parameters As Value Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass a copy

of the data

2/2/2015

Advanced Java concepts 9

James Tam

Passing Parameters As Reference Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass the address of the

parameter (refer to the

parameter in the method)

Which Parameter Passing Mechanism Is Used?

Passed by value

• All ‘simple’ built in types:
– Integers (byte, short, int,
long)

– Floating point (float,
double)

– Character (char)

– Boolean (boolean)

Pass by reference

• Objects

• Arrays

• (That is anything that
consists of a reference and
the item referenced).

2/2/2015

Advanced Java concepts 10

James Tam

Parameter Passing Example

• Full example under:
/home/219/examples/advanced/2parameters

James Tam

Class Person

public class Person {

 private int age;

 private String name;

 public Person() {

 age = -1;

 name = "none";

 }

 public int getAge() {

 return(age);

 }

 public String getName() {

 return(name);

 }

2/2/2015

Advanced Java concepts 11

James Tam

Class Person (2)

 public void setAge(int anAge) {

 age = anAge;

 }

 public void setName(String aName) {

 name = aName;

 }

}

James Tam

Class ParameterExample

public class ParameterExample

{

 public void modify(Person aPerson, int aNum)

 {

 aPerson.setName("Eric Cartman");

 aPerson.setAge(10);

 aNum = 888;

 System.out.println("Person inside modify()");

 System.out.println(aPerson.getName() + " " +

 aPerson.getAge());

 System.out.println("Number inside modify()");

 System.out.println(aNum);

 }

}

Modifies
parameters here

2/2/2015

Advanced Java concepts 12

James Tam

The Driver Class

public class Driver

{

 public static void main(String [] args)

 {

 int num = 13;

 Person aPerson = new Person();

 ParameterExample pe = new ParameterExample();

 System.out.println("Person in main() before edit");

 System.out.println(aPerson.getName() + " " +

 aPerson.getAge());

 System.out.println("Number inside main() before edit");

 System.out.println(num);

 System.out.println("----------");

James Tam

The Driver Class (2)

 pe.modify(aPerson,num);

 System.out.println("----------");

 System.out.println("Person in main() after edit");

 System.out.println(aPerson.getName() + " " +

 aPerson.getAge());

 System.out.println("Number inside main() after edit");

 System.out.println(num);

 }

}

2/2/2015

Advanced Java concepts 13

James Tam

Previous Example: Analysis

• Why did the parameter that was passed by reference change
and the simple type (passed by value) did not?

James Tam

Benefits Of Employing References

• References require a bit more complexity but provide several
benefits over directly working with objects and arrays.

• Benefit 1: As you have just seen a reference contains the
address of ‘something’ (object, array).
– As long as the address of the object or array is retained changes made

inside the method will persist.

– Recall that functions or methods can only return zero or one things
(passing out of a function after it ends).

– Passing by reference (passing into the function just as it starts executing)
allows more than one change to persist after the function has ended:

fun (refernce1, reference2, reference3…etc.)

2/2/2015

Advanced Java concepts 14

James Tam

Benefits Of Employing References (2)

• Benefit 2: If an array or object is large then it may be much
more memory efficient to pass a reference instead.

• Example:
– References are typically 32 or 64 bits in size.

– An array or object will almost always be larger.

char [] array1 = new char[1000000]; // 2 MB

class SocialNetworkUser

{

 // attribute for images

 // attribute for videos

}

James Tam

Modifying Simple Types (Parameters)

• Only one thing to be changed: return the updated value after
the method ends)

• More than one thing to be changed:
– Pass an array (e.g., three integers must be modified in a method then

pass an array of integers with 3 elements).

– Employ a wrapper (class).

Image copyright unknown

2/2/2015

Advanced Java concepts 15

James Tam

Wrapper Class

• A class definition built around a simple type
e.g.,

public class IntegerWrapper

{

 private int num;

 public int getNum () { return num; }

 public void setNum (int newNum) { num = newNum; }

}

• Also Wrapper classes are also used to provide class-like
capabilities (i.e., methods) to simple variable types e.g., class
Integer

–http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

–Example useful method parseInt(String): converting strings to integers

int num = Integer.parseInt(“123”); // More on this later

James Tam

Arrays: Parameters And Return Values

• Full example under:
/home/219/examples/advanced/3arrayParameters

• Format, method call:
–When the method is called, passing an array as a parameter and storing a
return value appears no different as other types.

–Example (list1 and list2 are arrays)

 list2 = ape.oneDimensional(list1);

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

2/2/2015

Advanced Java concepts 16

James Tam

Arrays: Parameters And Return Values (2)

• Format, method definition:
– Use ‘square brackets’ to indicate that the return value or parameter is

an array.

– Each dimension requires an additional square bracket.

– One dimensional:

 public int [] oneDimensional(int [] array1)

– Two dimensional:

 public char [][] twoDimensional(char [][] array1)

James Tam

Array Of ‘Objects’

• Although referred to as an array of objects they are actually
arrays of references to objects.

• Recall for arrays 2 steps are involved to create array
int [] array; // Reference to array

array = new int[3]; // Creates array of integers

• Recall for objects 2 steps are also required to create object
Person jim; // Reference to Person object

jim = new Person(); // Creates object

2/2/2015

Advanced Java concepts 17

James Tam

Array Of ‘Objects’ (2)

• An array of objects is actually an array of references to objects.

• So 3 steps are usually required
– Two steps are still needed to create the array

// Step 1: create reference to array

Person [] somePeople;

// Step 2: create array

somePeople = new Person[3];

•In Java after these two steps each array element be null.

 somePeople[0].setAge(10); // Null pointer exception

– The third step requires traversal through array elements (as needed):
create a new object and have the array element refer to that object.

•(The third step can typically be skipped for array elements that are supposed to
be ‘empty’)

James Tam

Array Of ‘Objects’ (3)

– (Step 3: creating objects continued)

 for (i = 0; i < 3; i++)

 {

 // Create object, array element refers to that object

 somePeople[i] = new Person();

 // Now that array element refers to an object, a method

 // can be called.

 somePeople[i].setAge(i);

 }

2/2/2015

Advanced Java concepts 18

James Tam

Array Of Objects: Example

• Location of the full example:
– /home/219/examples/advanced/4arrayReferences/simple

James Tam

Class Person

public class Person

{

 private int age;

 public Person() {

 age = 0;

 }

 public int getAge() {

 return(age);

 }

 public void setAge(int anAge) {

 age = anAge;

 }

}

2/2/2015

Advanced Java concepts 19

James Tam

Driver Class

public class Driver

{

 public static void main(String [] args) {

 Person [] somePeople; // Reference to array

 int i;

 somePeople = new Person[3]; // Create array

 for (i = 0; i < 3; i++) {

 // Create object, each element refers to a newly

 // created object

 somePeople[i] = new Person();

 somePeople[i].setAge(i);

 System.out.println("Age: " +

 somePeople[i].getAge());

 }

 }

}

James Tam

Design Example

• Suppose we wanted to simulate a 2D universe in the form of a
numbered grid (‘World’)
class World

{

 private [][] Tardis grid;

}

• Each cell in the grid was either an empty void or contained the
object that traveled the grid (‘Tardis’)1

class Tardis

{

}

1 Tardis and “Doctor Who” © BBC

2/2/2015

Advanced Java concepts 20

James Tam

General Description Of Program

• The ‘world/universe’ is largely empty.

• Only one cell contains the Tardis.

• The Tardis can randomly move from cell to cell in the grid.

• Each movement of Tardis uses up one unit of energy

Designing The World

Class World

• Attributes?

• Methods?

Class Tardis

• Attributes?

• Methods?

2/2/2015

Advanced Java concepts 21

James Tam

CAUTION: STOP READING AHEAD

• JT’s note: Normally you are supposed to read ahead so you are
prepared for class.

• In this case you will get more out of the design exercise if you
don’t read ahead and see the answer beforehand.

• That will force you to actually think about the problem yourself
(and hopefully get a better feel for some design issues).

• So for now skip reading the slides that follow this one up to the
one that has a corresponding ‘go’ symbol all over it.

• After we have completed the design exercise in class you
should go back and look through those slides (and the source
code).

Image copyright unknown

James Tam

Tardis

• Attributes
– Current energy level

• Methods:
– Randomly generating movement:

• Some method must reduce the energy level as the Tardis moves

• The actual ‘movement’ from square to square in the grid will be a
responsibility of class World because the grid is an attribute of the world.

2/2/2015

Advanced Java concepts 22

James Tam

• Attributes
– A 2D array that stores information about the ‘universe’

– Most array elements will be empty (null)

– One element will refer to the Tardis object

– The maximum number of rows and columns

– The current location (row/column) of the Tardis

• Needed to ‘move’ the Tardis from source cell to destination cell

– Theoretically the (row/col) could be (int, int) but because at most one
item can be returned from a method the location will be tracked as 1D
integer array (details in code):

• World.move()->Tardis.calculateCoordinates()

World

[0] [1]

[0] Null

[1] Null Null

Tardis
object

[0] [1]

[0] Null Null

[1] Null

Tardis
object

James Tam

World (2)

• Methods
– Constructor(s) to create the world

– Methods that modify the world (e.g., making sure each array element is
truly null: wipe()

– Displaying the world: display()

– Changing the contents of the objects in the world (e.g., editing the
world or moving objects): move()

2/2/2015

Advanced Java concepts 23

James Tam

Manager

• It is responsible for things like determining how long the
simulation runs.

• For very simple programs it may be a part of the World class
(in this case it’s part of the Driver).

• But more complex programs (e.g., need to track many pieces of
information like multiple players, current scores etc. and
simulation rules) may require a separate Manager class.
– The Driver will then likely be responsible for instantiating a Manager

object and calling some method of the manager to start the simulation.

James Tam

END SECTION: Proceed Reading

• You can continue reading ahead to the slides that follow this
one.
– JT: Thank you for your understanding and co-operation.

GO!

GO!

GO!

GO!

2/2/2015

Advanced Java concepts 24

James Tam

Source Code: Design Exercise

• Location of the full source code:
/home/219/examples/advanced/4arrayReferences/doctor

James Tam

public class Tardis

{

 private int energy;

 public Tardis(int startEnergy) {

 energy = startEnergy;

 }

 // max row and column define the size of the world

 public int[] calculateCoordinates(int maxRow, int maxColumn) {

 Random aGenerator = new Random();

 int [] newCoordinates = new int[2];

 newCoordinates[0] = aGenerator.nextInt(maxRow);

 newCoordinates[1] = aGenerator.nextInt(maxColumn);

 energy--;

 return(newCoordinates);

 }

}

Class Tardis
0 1 2 3 4 5 6

0

1

2

3

e.g., = 4 e.g., = 7

0, 1, 2, 3

0, 1, 2, 3, 4, 5, 6

2/2/2015

Advanced Java concepts 25

James Tam

Class World: Attributes

public class World

{

 private Tardis [][] grid; // Simulated world

 private int maxRow; // Row capacity

 private int maxColumn; // Column capacity

 private int [] currentLocation; // (row/col) of Tardis

James Tam

Class World: Constructor

 public World() {

 // Element 0: current row the tardis is located

 // Element 1: current column the tardis is located

 currentLocation = new int[2];

 Scanner in = new Scanner(System.in);

 System.out.print("Max rows: ");

 maxRow = in.nextInt();

 System.out.print("Max columns: ");

 maxColumn = in.nextInt();

 grid = new Tardis[maxRow][maxColumn];

 wipe(); // Empties the world, sets everything to null

 grid[0][0] = new Tardis(10); // Tardis starts top left

 currentLocation[0] = 0; // Tardis row = 0

 currentLocation[1] = 0; // Tardis col = 0

 display();

 }

2/2/2015

Advanced Java concepts 26

James Tam

Class World: Initialization

 public void wipe()

 {

 int r;

 int c;

 for (r = 0; r < maxRow; r++)

 {

 for (c = 0; c < maxColumn; c++)

 {

 grid[r][c] = null;

 }

 }

 }

[0] [1] [2]

[0]

[1]

r = 0, c = {0,1,2}

e.g., max = 2

e.g., max = 3

r = 1, c = {0,1,2}

null null null

null null null

James Tam

Class World: Display

 public void display()

 {

 int r;

 int c;

 for (r = 0; r < maxRow; r++)

 {

 for (c = 0; c < maxColumn; c++)

 {

 if (grid[r][c] == null)

 System.out.print(".");

 else

 System.out.print("T");

 }

 System.out.println();

 }

 }

0 1 2 3 4 5 6

0

1

2

3

e.g., = 4

e.g., = 7

Move cursor to display new
row on next line

2/2/2015

Advanced Java concepts 27

James Tam

Movement

• To make it look like the Tardis has ‘moved’.

• Set the destination (row/column) to refer to the Tardis object.

• Set the source (row/column) to null

[0] [1]

[0] Null

[1] Null Null

Tardis
object

[0] [1]

[0] Null Null

[1] Null

Tardis
object

Before move After move

James Tam

Class World: Move

 public void move()

 {

 // currentLocation 1D array stores Tardis location

 int currentRow = currentLocation[0];

 int currentColumn = currentLocation[1];

 // Keep track of where the Tardis is currently located

 int oldRow = currentRow;

 int oldColumn = currentColumn;

 // Store new (row/col) in 1D array (currentLocation)

 currentLocation =

 grid[currentRow][currentColumn].calculateCoordinates

 (maxRow,maxColumn);
Recall:
Tardis.currentCoordinates()
randomly generates a new
(row/column) location

2/2/2015

Advanced Java concepts 28

James Tam

Class World: Move (2)

 // Update temporary values with current location

 currentRow = currentLocation[0];

 currentColumn = currentLocation[1];

 // Copy tardis from the old location to the new one.

 grid[currentRow][currentColumn] = grid[oldRow][oldColumn];

 // Check if tardis trying to move onto same square, don't

 // 'wipe' if this is the case or tardis will be lost

 // (Tardis object becomes a memory leak).

 if ((currentRow == oldRow) &&

 (currentColumn == oldColumn)) {

 System.out.println(“Same location");

 }

 else {

 // ‘wipe’ tardis off old location

 grid[oldRow][oldColumn] = null;

 }

James Tam

Class World: Move (3)

 System.out.println("Tardis re-materializing");

 display();

 }

2/2/2015

Advanced Java concepts 29

James Tam

The Driver Class (Also The “Manager”)

public class Driver

{

 public static void main(String [] args)

 {

 Scanner in = new Scanner(System.in);

 World aWorld = new World();

 int i;

 for (i = 0; i < 10; i++)

 {

 aWorld.move();

 System.out.println("Hit enter to continue");

 in.nextLine();

 }

 System.out.println("\n<<<Tardis is out of energy,

 end simulation>>> \n");

 }

}

James Tam

Universally Accessible Constants

• What you currently know
– How to declare constants that are local to a method

class Driver {

 main() {

 final int A_CONST = 10;

 }

}

• If you need constants that are accessible throughout your
program then declare them as class constants.

2/2/2015

Advanced Java concepts 30

James Tam

Declaring Class Constants

• Format:
public class <class name>

{

 public final static <type> <NAME> = <value>;

}

• Example:

public class Person

{

 public final static int MAX_AGE = 144;

}

• Note: Because constants cannot change it is okay to set the
access level to public.

James Tam

Accessing Class Constants

• Format (outside of the class definition)1:
<class name>.<constant name>;

• Example (outside of the class definition):
main()

{

 System.out.println(“Max life span: “ + Person.MAX_AGE);

}

• Accessing a constant inside the methods of that class do not
require the name of the class
public class Person {

 …

 public void fun() { System.out.println(MAX_AGE); }

}

2/2/2015

Advanced Java concepts 31

James Tam

Introducing A New Concept With..Class Sheep!

public class Sheep
{
 private String name;

 public Sheep()
 {
 name = "No name";
 }
 public Sheep(String aName)
 {
 setName(aName);
 }
 public String getName() { return name;}

 public void setName(String newName) { name = newName; }
}

James Tam

We Create Several Sheep

I’m Bill! I’m
Nellie!

I’m Jim!

Image copyright unknown

2/2/2015

Advanced Java concepts 32

James Tam

Question: Who Tracks The Size Of The Herd?

Bill: Me! Nellie:
Me!

Jim: Me!

Image copyright unknown

James Tam

Answer: None Of The Above!

•Information about all instances of a class should not be tracked
by an individual object.

•So far we have used instance fields.

•Each instance of an object contains it’s own set of instance fields
which can contain information unique to the instance.
public class Sheep

{

 private String name;

 ...

}

name: Jim name: Nellie name: Bill

Object Object Object

2/2/2015

Advanced Java concepts 33

James Tam

The Need For Static (Class Attributes)

• Static fields: One instance of the attribute exists for the class
(not one attribute for each instance of the class)

Class Sheep
flockSize

name: Jim name: Nellie name: Bill

Object Object Object

James Tam

Static (Class) Methods

•Are associated with the class as a whole and not individual
instances of the class.

–Can be called without having an instances (because it’s
called through the class name not a reference/instance
name).

–Instance method:
Scanner in = new Scanner(System.in);

in.nextInt(); // refName.method()

–Class Method:
double squareRoot = Math.sqrt(9); // ClassName.method()

•Typically implemented for classes that are never instantiated
e.g., class Math.

2/2/2015

Advanced Java concepts 34

James Tam

Accessing Static Methods/Attributes

• Inside the class definition
Format:

–<attribute or method name>

Example:

 public Sheep ()

 {

 flockSize++;

 }

James Tam

Accessing Static Methods/Attributes (2)

• Outside the class definition
Format:

<Class name>.<attribute or method name>

Example:

Sheep.getFlockSize();

2/2/2015

Advanced Java concepts 35

James Tam

Static Data And Methods: UML Diagram

•Location of the online example:
–/home/219/examples/advanced/5classAttributes

Driver

Sheep

-flockSize:int

-name: String

+Sheep()

+Sheep(aName:String)

+getFlockSize():int

+getName():String

+setName(aName:String):
 void

Static attribute is

specified using

underlining

Static attribute is

specified using

underlining

James Tam

Static Data And Methods: The Driver Class

public class Driver

{

 public static void main(String [] args) {

 System.out.println();

 System.out.println("You start out with " +

 Sheep.getFlockSize() +

 " sheep");

 System.out.println("Creating flock...");

 Sheep nellie = new Sheep("Nellie");

 Sheep bill = new Sheep("Bill");

 Sheep jim = new Sheep();

 System.out.println("Current count " +

 Sheep.getFlockSize());

 }

}

2/2/2015

Advanced Java concepts 36

James Tam

Static Data And Methods: The Sheep Class

public class Sheep
{
 private static int flockSize = 0;
 private String name;

 public Sheep() {
 flockSize++;
 name = "No name";
 }
 public Sheep(String aName) {
 flockSize++;
 setName(aName);
 }

 public static int getFlockSize () { return flockSize; }
 public String getName() { return name;}
 public void setName(String newName) { name = newName; }
}

James Tam

Rules Of Thumb: Instance Vs. Class Fields

•If a attribute can differ between instances of a class:
–The field probably should be an instance field (non-static)

•If the attribute field relates to the class (rather to a particular
instance) or to all instances of the class

–The field probably should be a static field of the class

2/2/2015

Advanced Java concepts 37

James Tam

Rule Of Thumb: Instance Vs. Class Methods

• If a method can be invoked regardless of the number of
instances that exist (e.g.., the method can be run when there
are no instances) then it probably should be a static method.

• If it never makes sense to instantiate an instance of a class
then the method should probably be a static method.
– E.g., the class doesn’t have any variable attributes only static constants

such as class Math

• Otherwise the method should likely be an instance method.

James Tam

Static Vs. Final

•Static: Means there’s one instance of the attribute for the class
(not individual instances for each instance (object) of the class)

•Final: Means that the attribute cannot change (it is a constant)

public class Foo

{

 public static final int num1= 1;

 private static int num2;

 public final int num3 = 1;

 private int num4;

 : :

}

/* Why bother (waste) */

/* Rare */

2/2/2015

Advanced Java concepts 38

James Tam

An Example Class With A Static Implementation

public class Math

{

 // Public constants

 public static final double E = 2.71…

 public static final double PI = 3.14…

 // Public methods

 public static int abs (int a);

 public static long abs (long a);

 : :

}

• For more information about this class go to:

– http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

James Tam

Should A Class Be Entirely Static?

•Generally it should be avoided if possible because it often
bypasses many of the benefits of the Object-Oriented approach.

•Usually purely static classes (cannot be instantiated) have only
methods and no data (maybe some constants).

•Example (purely for illustration):
Math math1 = new Math();

Math math2 = new Math();

// What’s the difference? Why bother?

math1.abs() vs. math2.abs();

•When in doubt DO NOT make attributes and methods static.

2/2/2015

Advanced Java concepts 39

James Tam

What You Should Know: Attributes Vs. Locals

• Attributes: Defined inside a class definition but outside the
body of a method.
class Person {

 private int age;

}

• Locals: Defined inside the body of a method.
class Person {

 public void Person(){

 Scanner in = new Scanner(System.in);

 }

}

James Tam

Reminder: Scope

• Attributes
– Declared within the body of a class but outside a method

– Accessible anywhere with the class methods

class Person {

 private int age;

 public Person() { age = 12; }

 ...

}

• Local variables
– Declared inside the body of a method and only accessible in that

method

class Person {

 public Person () {

 Scanner in = new Scanner(System.in);

 }

}

Scope of
attributes and
methods

Scope of locals

2/2/2015

Advanced Java concepts 40

James Tam

Self Reference: The ‘This’ Reference

• From every (non-static) method of an object there exists a reference to the
object (called the “this” reference) 1

 main(String args []) {
 Person fred = new Person();
 Person barney = new Person();
 fred.setAge(35);
 }

 public class Person {
 private int age;
 public void setAge(int anAge) {
 age = anAge;
 }
 …
 }

1 Similar to the ‘self’ keyword of Python except that ‘this’ is a syntactically enforced name.

The ‘this’ reference is implicitly
passed as a parameter to all non-
static methods. One use of ‘this’ is
to distinguish which object’s method
is being invoked (in this case Fred vs.
Barney)

This is one reason why methods must
be invoked via a reference name (the
contents of the reference ‘fred’ will be
copied into the ‘this’ reference (so
both point to the ‘Fred’ object).

James Tam

The ‘This’ Reference Is Automatically
Referenced Inside (Non-Static) Methods

 public class Person {

 private int age;

 public void setAge(int anAge) {

 // These two statements are equivalent

 age = anAge;

 this.age = anAge;

 }

 }

2/2/2015

Advanced Java concepts 41

James Tam

New Terminology

• Explicit parameter(s): explicitly passed (you can see them when
the method is called and defined).
fred.setAge(10); // 10 explicit

barney.setAge(num); // num explicit

public void setAge(int age) { ... } // age explicit

• Implicit parameter: implicitly passed into a method
(automatically passed and cannot be explicitly passed): the
‘this’ reference.
public void setAge(int age) { ... } // ‘this’ is implicit

James Tam

Benefits Of ‘This’: Attributes

• Another side benefit is the this reference can make it very
clear which attributes are being accessed/modified.
public class Person

{

 private int age;

 public void setAge(int age) {

 this.age = age;

 }

}

Parameter
(local
variable)
‘age’

Attribute
‘age’

2/2/2015

Advanced Java concepts 42

James Tam

Benefits Of ‘This’: Parameters

• Another side benefit is the this reference can make it clear
which object is being accessed e.g., when a class method takes
as a explicit parameter an instance of that class1

main (String [] args) {

 Person fred = new Person();

 Person barney = new Person();

 barney.nameBestBuddy(fred); // JT: Explicit? Implicit?

}

// JT: What will be the output?

public void nameBestBuddy(Person aPerson) {

 println(this.name + “ best friend is “ + aPerson.name);

}

1 JT: more on this one later – see the ‘equals()’ method

James Tam

• Recall: according to scoping rules, local variables are not
accessible outside of that function or method (unless returned
back to the caller or passed into another method).

main (String [] args) {
 int age = 27;
 Person jim = new Person();
 jim.setAge(age);
}
class Person {
 public void setAge(int age) {
 this.age = age;
}

Benefits Of ‘This’: Scope

Normally the object referred to by the ‘jim’ reference
not accessible outside of main() but the ‘this’
reference contains it’s address (implicit pass by
reference)

main()

age 27

jim.setAge()

jim (imp)

age 27 this

jim .age

27 (exp)

2/2/2015

Advanced Java concepts 43

James Tam

• Recall: static methods do not require an object to be
instantiated because they are invoked via the class name not a
reference name.
int result = Math.abs(-12);

• That means static methods do not have the implicit ‘this’
parameter passed in.

• Also recall I said for now avoid [for the ‘Driver’ class]:
– Defining attributes for the Driver

– Defining methods for the Driver (other than the main method)

Static Methods: No ‘This’ Reference

James Tam

Static Methods: No ‘This’ Reference (2)

public class Driver

{

 private int num;

 public static void main(String [] args)

 {

 num = 123;

 }

}

Driver.java:6:
error: non-static
variable num cannot
be referenced from a
static context

•Main() must be static! Automatically called when the program runs via ‘java Driver’ before
any other code.

•If main() were non-static it would require an object to be instantiated (which must occur
inside of a method).

•But there would be no way to call that method that instantiates an object without a starting
static method.

•Because main() must be static, it has no ‘this’ implicit parameter which in turn means that
non-static attributes like ‘num’ cannot be accessed (although static attributes/methods
accessible): Driver.static_name or just via static_name

2/2/2015

Advanced Java concepts 44

James Tam

Mutable Vs. Immutable Types

• Mutable types
– Original memory can be modified

int num = 666;

num = 777;

• Immutable types
– The original memory location cannot be modified

– Assigning new values will create a new memory location and leave the
original untouched.

String s1 = “abc”;

String s2 = s1;

s1 = “xyz”;

System.out.println(s1 + “ “ + s2);

James Tam

Mutable Vs. Immutable

• Advantage of mutable
types: speed

• Advantage of immutable
types: ‘security’

2/2/2015

Advanced Java concepts 45

James Tam

Mutable Advantage: Speed

• Location of full examples:
– /home/219/examples/advanced/6mutableImmutable/speed

public class StringExample {

 public static void main

 (String [] args) {

 String s = "0";

 int i;

 for (i = 1; i < 100000; i++)

 s = s + i;

 }

}

public class StringBufferExample {

 public static void main

 (String [] args) {

 StringBuffer s;

 int i;

 s = new StringBuffer("0");

 for (i = 1; i < 100000; i++)

 s = s.append(i);

 }

}

James Tam

Immutable Advantage: Security

• Location of the full example:
– /home/219/examples/advanced/6mutableImmutable/security

2/2/2015

Advanced Java concepts 46

James Tam

Class SecurityExample

public class SecurityExample
{
 private String s;
 private StringBuffer sb;

 public SecurityExample() {
 s = new String("Original s");
 sb = new StringBuffer("Original sb");
 }

 public String getS() {
 return s;
 }

 public StringBuffer getSB() {
 return sb;
 }
}

James Tam

The Driver Class

public class Driver
{
 public static void main(String [] args)
 {
 SecurityExample se = new SecurityExample();
 String s;
 StringBuffer sb;

 System.out.println("Originals");
 System.out.println("\t" + se.getS());
 System.out.println("\t" + se.getSB());

 s = se.getS();
 sb = se.getSB();

2/2/2015

Advanced Java concepts 47

James Tam

The Driver Class (2)

 sb.delete(0,sb.length());
 sb.append("lolz! mucked ur data :P");
 s = "lolz! mucked ur data :P";
 System.out.println();

 System.out.println("After modfications");
 System.out.println("Values of locals");
 System.out.println("\t\tString=" + s);
 System.out.println("\t\tStringBuffer=" + sb);

 System.out.println("\tValues of attributes");
 System.out.println("\t\tString=" + se.getS());
 System.out.println("\t\tStringBuffer=" + se.getSB());
 }
}

James Tam

Automatic Garbage Collection Of Java
References

•Dynamically allocated memory is automatically freed up when it
is no longer referenced (Foo = a class) e.g., Foo f1 = new Foo();

–Foo f2 = new Foo();

References Dynamic memory

f1(Address of a “Foo”)

f2 (Address of a “Foo”)

Object (Instance of a “Foo”)

Object (Instance of a “Foo”)

2/2/2015

Advanced Java concepts 48

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when it
is no longer referenced e.g., f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

James Tam

Automatic Garbage Collection Of
Java References (3)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g., f2 = null; (recall that a null
reference means that the reference refers to nothing, it doesn’t
contain an address).
References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

Image copyright unknown

2/2/2015

Advanced Java concepts 49

James Tam

Caution: Not All Languages Provide Automatic
Garbage Collection!

•Some languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

•In this case dynamically allocated memory must be manually
freed up by the programmer.

•Memory leak: memory that has been dynamically allocated
(such as via the Java ‘new’ keyword’) but has not been freed up
after it’s no longer needed.
–Memory leaks are a sign of poor programming style and can result in

significant slowdowns.

James Tam

The Finalize() Method

• The Java interpreter tracks what memory has been dynamically
allocated via ‘new’

• It also tracks when memory is no longer referenced.

• When the system isn’t busy, the Automatic Garbage Collector
is invoked.

• If an object has a finalize method implemented then it is
invoked:
– The finalize is a method written by the programmer to free up non-

memory resources e.g., closing and deleting temporary files created by
the program, closing network connections.

– This method takes no arguments and returns no values (i.e., returns
void)

– Dynamic memory is NOT freed up by this method.

• After the finalize method finishes execution, the dynamic
memory is freed up by the Automatic Garbage Collector.

2/2/2015

Advanced Java concepts 50

The Finalize() Method
• Example sequence:
 public class Foo

 {

 int num;

 public Foo() { num = 1; }

 public Foo(int aValue) { num = aValue; }

 ...

 }

 ...

 Foo f1 = new Foo ();

f1

num 1

The Finalize() Method
• Example sequence:
 public class Foo

 {

 int num;

 public Foo() { num = 1; }

 public Foo(int aValue) { num = aValue; }

 ...

 }

 ...

 Foo f1 = new Foo();

 f1 = new Foo(10);

f1

num 1

num 10

2/2/2015

Advanced Java concepts 51

The Finalize() Method
• Example sequence:
 public class Foo

 {

 int num;

 public Foo() { num = 1; }

 public Foo(int aValue) { num = aValue; }

 ...

 }

 ...

 Foo f1 = new Foo();

 f1 = new Foo(10);

f1

num 1

num 10

Don’t know when

Image copyright unknown

The Finalize() Method
• Example sequence:
 public class Foo

 {

 int num;

 public Foo() { num = 1; }

 public Foo(int aValue) { num = aValue; }

 ...

 }

 ...

 Foo f1 = new Foo();

 f1 = new Foo(10);

f1

num 1

num 10

f1.finalize()

Don’t know when

Image copyright unknown

2/2/2015

Advanced Java concepts 52

The Finalize() Method
• Example sequence:
 public class Foo

 {

 int num;

 public Foo() { num = 1; }

 public Foo(int aValue) { num = aValue; }

 ...

 }

 ...

 Foo f1 = new Foo();

 f1 = new Foo(10);

f1

num 1

num 10

f1.finalize()

Don’t know when

Image copyright unknown

Example Application Of finalize()

• As a sheep object gets de-allocated from memory (memory is
freed up because the object is no longer referenced) the
finalize() method could update the sheep count.
public class Sheep

{

 private int flockSize = 0;

 public Sheep() {

 flockSize++;

 }

 …

 public void finalize() {

 flockSize--;

 }

}

2/2/2015

Advanced Java concepts 53

Displaying The Current State Of Objects

• The toString() method is commonly implemented to allow
determination of the state of a particular object (contents of
important attributes).

• This method returns a string representation of the state of an
object.

• It will automatically be called whenever a reference to an
object is passed as a parameter is passed to the
“print()/println()” method.

toString() Example

• Location of the full example:
– /home/219/examples/advanced/7toString

2/2/2015

Advanced Java concepts 54

Class Person

public class Person
{
 private int height;
 private int weight;
 private String name;

 public Person(String name, int height, int weight)
 {
 this.name = name;
 this.height = height;
 this.weight = weight;
 }

Class Person (2)

 public String getName()
 {
 return(name);
 }

 public int getHeight()
 {
 return(height);
 }

 public int getWeight()
 {
 return(weight);
 }

2/2/2015

Advanced Java concepts 55

Class Person (3)

 public String toString()
 {
 String s;
 s = "Name: " + name + "\t";
 s = s + "Height: " + height + "\t";
 s = s + "Weight: " + weight + "\t";
 return(s);
 }
}

The Driver Class

public class Driver
{
 public static void main(String [] args)
 {
 Person jim = new Person("Jim",69,160);
 System.out.println("Atrributes via accessors()");
 System.out.println("\t" + jim.getName() + " " +
 jim.getHeight() +
 " " + jim.getWeight());

 System.out.println("Atrributes via toString()");
 System.out.println(jim);

 }
}

2/2/2015

Advanced Java concepts 56

Comparing Objects

• Recall from the discussion of parameter passing (pass by
reference) that a reference contains the address of an object or
array.

• Using the comparison operator on the references ‘==‘ will only
determine if the address (and not data) is the same.
String s1 = “hi”;

String s2 = “hi”;

if (s1 == s2)

s1

String object

“hi”

s2

String object

“hi”

Comparing Objects (2)

• Either each attribute of each object must be manually
compared or else some form of equals() method must be
implemented.

• Class String has two methods:
– compareTo() # ABC not same as Abc

– compareToIgnoreCase() # ABC same as abc

2/2/2015

Advanced Java concepts 57

Implementing Equals()

• Location of the full example:
– /home/219/examples/advanced/8equals

Class Person

public class Person {
 private int height;
 private int weight;

 public Person(int height, int weight) {
 this.height = height;
 this.weight = weight;
 }

 public int getHeight() {
 return(height);
 }

 public int getWeight() {
 return(weight);
 }

2/2/2015

Advanced Java concepts 58

Class Person (2)

 public void setHeight(int height) {
 this.height = height;
 }

 public void setWeight(int weight) {
 this.weight = weight;
 }

 public boolean equals(Person compareTo) {
 boolean flag = true;
 if (this.height != compareTo.getHeight() ||
 this.weight != compareTo.getWeight())
 flag = false;
 return(flag);
 }
}

Implicit: Jim Explicit: Bob

The Driver Class

public class Driver
{
 public static void main(String [] args)
 {
 Person jim = new Person(69,160);
 Person bob = new Person(72,175);

2/2/2015

Advanced Java concepts 59

The Driver Class (2)

 System.out.println("Different data, addresses");
 System.out.println("Compare data via accessors()");
 if (jim.getHeight() == bob.getHeight() &&
 jim.getWeight() == bob.getWeight())
 System.out.println("\tObjects same data");
 else
 System.out.println("\tNot equal");

 System.out.println("Compare data via equals()");
 if (jim.equals(bob) == true)
 System.out.println("\tObjects same data");
 else
 System.out.println("\tNot equal");

 System.out.println("Compare addresses");
 if (jim == bob)
 System.out.println("\tSame address");
 else
 System.out.println("\tDifferent addresses");

new
Person(69,160);

new
Person(72,175);

The Driver Class (3)

 System.out.println();
 System.out.println("Same data, different addresses");
 jim.setHeight(72);
 jim.setWeight(175);
 if (jim.equals(bob) == true)
 System.out.println("\tObjects same data");
 else
 System.out.println("\tNot equal");

 System.out.println("Compare addresses");
 if (jim == bob)
 System.out.println("\tSame address");
 else
 System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);

2/2/2015

Advanced Java concepts 60

The Driver Class (4)

 System.out.println();
 System.out.println("Same data, different addresses");
 jim.setHeight(72);
 jim.setWeight(175);
 if (jim.equals(bob) == true)
 System.out.println("\tObjects same data");
 else
 System.out.println("\tNot equal");

 System.out.println("Compare addresses");
 if (jim == bob)
 System.out.println("\tSame address");
 else
 System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);

The Driver Class (5)

 System.out.println();
 System.out.println("Same addresses");
 jim = bob;
 if (jim == bob)
 System.out.println("\tSame address");
 else
 System.out.println("\tDifferent addresses");

 jim = bob;

2/2/2015

Advanced Java concepts 61

James Tam

After This Section You Should Now Know

• References
– How references and objects are related

– The difference between a deep vs. shallow copy

– How to check for if objects are identical (on a field-by-field basis and by
implementing an equals() method

– What is the difference between comparing references vs. objects

• How the two methods of parameter passing work, what types
are passed using each mechanism

• What are the benefits of employing the indirect mechanism of
references-data vs. just data variables

• What is a wrapper class and what is its purpose

James Tam

After This Section You Should Now Know (2)

• How to pass arrays as parameters and return them from
methods

• Arrays of 'objects‘
– Why they are really arrays of references

– How to declare such an array, create and access elements

• How could a simple simulation be implemented using an array
of references

• How to declare class constants

• Static attributes and methods
– How to create statics

– How to access statics

– When something should be static vs. non-static (instance)

– The difference between static and final

2/2/2015

Advanced Java concepts 62

James Tam

After This Section You Should Now Know (3)

• Design issues
– When should something be declared as local vs. an attribute

– How to determine which attributes and methods should be part of
which classes

• What is the 'this' reference
– When it is and is not an implicit parameter

– What's the difference between implicit and explicit parameters

– What are the benefits of having a this parameter

James Tam

After This Section You Should Now Know (4)

• Mutable vs. immutable types
– What is the difference

– What is the advantage of each type

– What is automatic garbage collection

• The finalize() method
– How to define one

– When is it called

– What are common uses for this method

– How is it related to automatic garbage collection

• How to display the current state of an object by implementing
a toString() method

2/2/2015

Advanced Java concepts 63

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 125

