Advanced Java Programming

After mastering the basics of Java
you will now learn more complex but
important programming concepts as
implemented in Java.

Review: Previous Class

* What you have learned in your prerequisite class: some
variables directly contain data:

numl = 12
num2 = 3.5;
ch = "a';

* What you may have learned your perquisite class:
some variables ‘refer’ to other variables.

[1
[1,2,3]

James Tam

Advanced Java concepts

2/2/2015

2/2/2015

Review: This Class

* In Java when you use objects and arrays there are two things
involved:
— Reference
— Object (or array)
* Example with an object
Person charlie; // Creates reference to object
charlie = new Person(“Sheen”); // Creates object
* Example with an array
double [] salaries; // Creates reference to array
salaries = new double[100]; // Creates array

James Tam

Addresses And References

* Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human

memory)
i’°o
* Think of the delivery address as something that is a ‘reference’

to the location that you wish to reach.

— Lose the reference (electronic, paper, memory) and you can’t ‘access’
(go to) the desired location.

121 122 123

-~
|/

James Tam

Advanced Java concepts 2

2/2/2015

Adressesses And References

* A reference to an array does not directly contain the contents
of a string
— Instead the reference contains the address (“refers to”) of the array

James Tam

Recap: Variables

* Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

* Normally a location is accessed via the name of the variable.
— Note however that each location is also numbered!

Image: Curtesy of Rob Kremer James Tam

Advanced Java concepts 3

2/2/2015

References And Objects
* Full example under:
“/home/219/examples/advanced/1shallowDeep/OreferenceExamples”
public class Person
{
private String name;
public Person() { name = "none"; }
public Person(String newName) { setName(newName);
}
public String getName() { return(name); }
public void setName(String newName) {
name = newName;
}
} James Tam
References And Objects (2)
* Inmain():

Person bart;

Person lisa;

bart = new Person("bart"); Bart object name:

System.out.println("Bart object name: " + bart.getName());

lisa = bart;

bart = new Person("lisa");
System.out.println("Bart object name: " + bart.getName());

System.out.println("Lisa object name: + lisa.getName());

James Tam

Advanced Java concepts 4

Person
Person
bart =
lisa =
bart =

bart @ = 200

_ (Person object)
lisa @ = 100 / “bart”

References And Objects (3)

* What happened?

bart;
lisa;
new Person("bart");

bart;
new Person("lisa");

Address = 200
(Person object)

ulisa"

Address = 100

James Tam
References And Objects (4)
Person bart;
Person lisa;
bart = new Person("bart");
lisa = bart;
bart = new Person("lisa");
Note:
* The object and the reference to the object are separate e.g., ‘bart’
originally referenced the ‘bart object’ later it referenced the ‘lisa
object’
* The only way to access the object is through the reference.
* These same points applies for all references (arrays included)
James Tam

Advanced Java concepts

2/2/2015

Shallow Copy Vs. Deep Copies

* Shallow copy (new term, concept should be review)

A shortcut (‘link’ in
~ 7] UNIX) is similar to a

s shallow copy.

s Multiple things that

W] abu dhabi s refer to the same

7] dubai places to see - Shortcut < item (document)
@ dubai places to see
@ sharjah places to see

— Copy the address from one reference into another reference
— Both references point to the same location in memory

James Tam

Shallow Copy Vs. Deep Copies (2)

* Shallow copy, full example under:
/home/219/examples/advanced/1shallowDeep

Person mary = new Person(2l);
Person bob = new Person(12);

System.out.println(mary.age + " " +
bob.age);

mary = bob; // Shallow;

bob.age = 66;

System.out.println(mary.age + " " +
bob.age);

Memory
leak
my[1 [aee[z]| o ©

bob |—|—. Agel 66 |

James Tam

Advanced Java concepts

2/2/2015

B abu dhabi

{#] dubai places to see - Shortcut

W dubai places to see .7
¥ sharjah places to see -,

-’
¥ sharjah places to see - Copy 7

variable)

Shallow Copy Vs. Deep Copies (3)

* Deep copy (new term, concept should be review)

Making an actual
physical copy is
similar to a deep
7 copy.

— Don’t copy addresses stored in the references
— Instead the data referred to by the references are copied
— After the copy each reference still refers to a different address (data

James Tam

* Deep copy, full example under:

// Mary still 66

bob = new Person(77);

mary.age = bob.age; // Deep

bob.age = 144;

System.out.println(mary.age +
bob.age);

man[| Age[77]-

bob [| Age]_144-

Shallow Copy Vs. Deep Copies (4)

/home/219/examples/advanced/1shallowDeep

=]
=]
=
19
19

+

James Tam

Advanced Java concepts

2/2/2015

2/2/2015

Methods Of Parameter Passing

* Pass by value

— The data stored (the “value” stored) in the parameter is copied
* Pass by reference

— Pass the address of the parameter

— This allows references to the parameter inside the method (the method
has a “reference” to the original parameter).

James Tam

Passing Parameters As Value Parameters

N\
method (p1):

Pass a copy
of the data
7\
method (<parameter type> <p1p)
{
}

James Tam

Advanced Java concepts 8

[\
method (p1);]

7\
method (<parameter type> <p1p)
{

}

Passing Parameters As Reference Parameters

Pass the address of the
parameter (refer to the
parameter in the method)

James Tam

Passed by value
* All 'simple’ built in types:
— Integers (byte, short, int,
long)

— Floating point (float,
double)

— Character (char)
— Boolean (boolean)

Pass by reference
* Objects
* Arrays

* (That is anything that
consists of a reference and
the item referenced).

Which Parameter Passing Mechanism |Is Used?

Advanced Java concepts

2/2/2015

Parameter Passing Example

* Full example under:
/home/219/examples/advanced/2parameters

James Tam

Class Person

public class Person {

private int age;
private String name;

public Person() {
age = -1;
name = "none";

}

public int getAge() {
return(age);

}

public String getName() {
return(name);

}

James Tam

Advanced Java concepts

2/2/2015

10

2/2/2015

Class Person (2)

public void setAge(int anAge) {
age = anAge;

public void setName(String aName) {
name = aName;

James Tam

Class ParameterExample

public class ParameterExample

{

public void modify(Person aPerson, int aNum)
{ e ____ - Modifies

~ aPerson.setName("Eric Cartman"); “ ~Rarametershere

‘/\ aPerson.setAge(10); o7
Slum - 888;
System.out.println("Person inside modify()");
System.out.println(aPerson.getName() + " " +
aPerson.getAge());
System.out.println("Number inside modify()");

System.out.println(aNum);

James Tam

Advanced Java concepts 11

{

{

Person

System
System

System
System
System

public class Driver
public static void main(String [] args)
int num = 13;

ParameterExample pe = new ParameterExample();

The Driver Class

aPerson = new Person();

.out.println("Person in main() before edit");

.out.println(aPerson.getName() + " " +
aPerson.getAge());

.out.println("Number inside main() before edit");

.out.println(num);

.out.println("

n in main() be

er inside main() before edi

System

pe.modify(aPerson,num);

The Driver Class (2)

.out.println("----------);

Person inside modify ()
Eric Cartman 10

Number inside modify ()

System
System

System
System

.out.println("Person in main() after edit");

.out.println(aPerson.getName() + " " +
aPerson.getAge());

.out.println("Number inside main() after edit");

.out.println(num);

Person in main()
Eric Cartman 10

Number inside main/()
13

Advanced Java concepts

2/2/2015

12

Previous Example: Analysis

* Why did the parameter that was passed by reference change
and the simple type (passed by value) did not?

James Tam

Benefits Of Employing References

* References require a bit more complexity but provide several
benefits over directly working with objects and arrays.

* Benefit 1: As you have just seen a reference contains the
address of ‘something’ (object, array).

— As long as the address of the object or array is retained changes made
inside the method will persist.

— Recall that functions or methods can only return zero or one things
(passing out of a function after it ends).

— Passing by reference (passing into the function just as it starts executing)
allows more than one change to persist after the function has ended:

fun (referncel, reference2, reference3..etc.)

James Tam

Advanced Java concepts

2/2/2015

13

Benefits Of Employing References (2)

* Benefit 2: If an array or object is large then it may be much
more memory efficient to pass a reference instead.

* Example:
— References are typically 32 or 64 bits in size.
— An array or object will almost always be larger.
char [] arrayl = new char[1000000]; // 2 MB

class SocialNetworkUser

{

// attribute for images
// attribute for videos

James Tam

Modifying Simple Types (Parameters)

* Only one thing to be changed: return the updated value after
the method ends)

* More than one thing to be changed:

— Pass an array (e.g., three integers must be modified in a method then
pass an array of integers with 3 elements).

— Employ a wrapper (class).

Image copyright unknown

James Tam

Advanced Java concepts

2/2/2015

14

2/2/2015

Wrapper Class
* A class definition built around a simple type
e.g.,
public class IntegerWrapper
{

private int num;
public int getNum () { return num; }
public void setNum (int newNum) { num = newNum; }

* Also Wrapper classes are also used to provide class-like
capabilities (i.e., methods) to simple variable types e.g., class
Integer

—http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html
—Example useful method parseInt(String): converting strings to integers

int num = Integer.parseInt(“123”); // More on this later

James Tam

Arrays: Parameters And Return Values

* Full example under:
/home/219/examples/advanced/3arrayParameters

* Format, method call:

—When the method is called, passing an array as a parameter and storing a
return value appears no different as other types.

—Example (1ist1 and 1ist2 are arrays)
list2 = ape.oneDimensional(listl);

James Tam

Advanced Java concepts 15

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

2/2/2015

Arrays: Parameters And Return Values (2)

* Format, method definition:

— Use ‘square brackets’ to indicate that the return value or parameter is
an array.

— Each dimension requires an additional square bracket.
— One dimensional:
public int [] oneDimensional(int [] arrayl)

— Two dimensional:
public char [][] twoDimensional(char [][] arrayl)

James Tam

Array Of ‘Objects’

* Although referred to as an array of objects they are actually
arrays of references to objects.
* Recall for arrays 2 steps are involved to create array

int [] array; // Reference to array
array = new int[3]; // Creates array of integers

* Recall for objects 2 steps are also required to create object
Person jim; // Reference to Person object
jim = new Person(); // Creates object

James Tam

Advanced Java concepts 16

Array Of ‘Objects’ (2)

* An array of objects is actually an array of references to objects.

* So 3 steps are usually required
— Two steps are still needed to create the array
// Step 1: create reference to array
Person [] somePeople;

// Step 2: create array

somePeople = new Person[3];

*In Java after these two steps each array element be null.
somePeople[0].setAge(10); // Null pointer exception

— The third step requires traversal through array elements (as needed):
create a new object and have the array element refer to that object.
*(The third step can typically be skipped for array elements that are supposed to
be ‘empty’)

James Tam

Array Of ‘Objects’ (3)

— (Step 3: creating objects continued)
for (i = 0; i < 3; i++)

{
// Create object, array element refers to that object
somePeople[i] = new Person();
// Now that array element refers to an object, a method
// can be called.
somePeople[i].setAge(i);

}

James Tam

Advanced Java concepts

2/2/2015

17

2/2/2015

Array Of Objects: Example

* Location of the full example:
— /home/219/examples/advanced/4arrayReferences/simple

James Tam

Class Person

public class Person

{

private int age;

public Person() {
age = 0;
}

public int getAge() {
return(age);

}

public void setAge(int anAge) {
age = anAge;

}

James Tam

Advanced Java concepts 18

Driver Class

public class Driver
{
public static void main(String [] args) {
Person [] somePeople; // Reference to array
int i;
somePeople = new Person[3]; // Create array

for (i =0; i< 3; i++) {
// Create object, each element refers to a newly
// created object
somePeople[i] = new Person();

somePeople[i].setAge(i);
System.out.println("Age: " +
somePeople[i].getAge());

} James Tam

Design Example

* Suppose we wanted to simulate a 2D universe in the form of a
numbered grid (‘World’)
class World

{
private [][] Tardis grid;

}
* Each cell in the grid was either an empty void or contained the
object that traveled the grid (‘Tardis’)?
class Tardis

{

1 Tardis and “Doctor Who” © BBC

James Tam

Advanced Java concepts

2/2/2015

19

General Description Of Program

* The ‘world/universe’ is largely empty.

* Only one cell contains the Tardis.

* The Tardis can randomly move from cell to cell in the grid.
* Each movement of Tardis uses up one unit of energy

James Tam

Designing The World

Class World Class Tardis
e Attributes? e Attributes?
* Methods? * Methods?

Advanced Java concepts

2/2/2015

20

@ CAUTION: STOP READING AHEAD

* JT’s note: Normally you are supposed to read ahead so you are
prepared for class.

* In this case you will get more out of the design exercise if you
don’t read ahead and see the answer beforehand.

* That will force you to actually think about the problem yourself
(and hopefully get a better feel for some design issues).

* So for now skip reading the slides that follow this one up to the
one that has a corresponding ‘go’ symbol all over it.

* After we have completed the design exercise in class you
should go back and look through those slides (and the source
code).

@ Image copyright unknown am

Tardis

e Attributes

— Current energy level

* Methods:

— Randomly generating movement:
* Some method must reduce the energy level as the Tardis moves

* The actual ‘movement’ from square to square in the grid will be a
responsibility of class World because the grid is an attribute of the world.

James Tam

Advanced Java concepts

2/2/2015

21

World

* Attributes

— A 2D array that stores information about the ‘universe’
— Most array elements will be empty (null)
— One element will refer to the Tardis object
— The maximum number of rows and columns
— The current location (row/column) of the Tardis
* Needed to ‘move’ the Tardis from source cell to destination cell

Tardis

[0 Null (Lo [0 Null Null
[1 Null Nul (1] Null
k_, Tardis

. L bject
— Theoretically the (row/col) could be (int, int) but because at R e

item can be returned from a method the location will be tracked as 1D
integer array (details in code):

* World.move()->Tardis.calculateCoordinates()

James Tam

World (2)

* Methods

— Constructor(s) to create the world

— Methods that modify the world (e.g., making sure each array element is
truly null: wipe()

— Displaying the world: display()
— Changing the contents of the objects in the world (e.g., editing the
world or moving objects): move ()

James Tam

Advanced Java concepts

2/2/2015

22

Manager

* It is responsible for things like determining how long the
simulation runs.

* For very simple programs it may be a part of the Wor1ld class
(in this case it’s part of the Driver).

* But more complex programs (e.g., need to track many pieces of
information like multiple players, current scores etc. and
simulation rules) may require a separate Manager class.

— The Driver will then likely be responsible for instantiating a Manager
object and calling some method of the manager to start the simulation.

James Tam

’@ END SECTION: Proceed Reading @

* You can continue reading ahead to the slides that follow this
one.
— JT: Thank you for your understanding and co-operation.

Advanced Java concepts

2/2/2015

23

2/2/2015

Source Code: Design Exercise

* Location of the full source code:
/home/219/examples/advanced/4arrayReferences/doctor

James Tam

Class Tardis

0123456

public class Tardis 0
{ 1
private int energy;
2
public Tardis(int startEnergy) {
energy = startEnergy; 3

}

// max row and column define the size of the world

public int[] calculateCoordinates(int maxRow, int maxColumn) {
Random aGenerator = new Random(); e.g.,=4 e.g.,=7
int [] newCoordinates = new int[2];
newCoordinates[@] = aGenerator.nextInt(maxRow)
newCoordinates[1] = aGenerator.nextInt(maxColumn);
energy--; 0,1,23,4,5,6
return(newCoordinates);

0,1,2,3
;

James Tam

Advanced Java concepts 24

{

private Tardis [][] grid;
private int maxRow;

private int maxColumn;
private int [] currentLocation;

Class World: Attributes

public class World

// Simulated world

// Row capacity

// Column capacity

// (row/col) of Tardis

James Tam

System.
maxRow
System.

grid =

wipe();
grid[o]

currentLocation[@] = ©;
currentLocation[1] = ©;
display();

Class World: Constructor

public World() {
// Element @: current row the tardis is located
// Element 1: current column the tardis is located
currentLocation = new int[2];

Scanner in = new Scanner(System.in);

out.print("Max rows: ");
= in.nextInt();
out.print("Max columns: ");

maxColumn = in.nextInt();

new Tardis[maxRow][maxColumn];

// Empties the world, sets everything to null
[0] = new Tardis(10); // Tardis starts top left
// Tardis row = @

// Tardis col = @

James Tam

Advanced Java concepts

2/2/2015

25

Class World: Initialization

public void wipe()

{
int r;
int c; e.g., max =2
for (r = 0; r < maxRow; r++)
{ e.g., max=3
for (c = 0; c < maxColumn; c++)
{
grid[r][c] = null;
} [e] [1] [2]
} r=0, c={0,1,2} [e] null null null
¥ r=1, c = {0,1,2} [1] null null null
James Tam
Class World: Displa
F) y 9123456
public void display() 0
{ ‘ 1
int r;
int ¢; eg, =4 2
for (r = 0; r < maxRow; r++)
{ 3
e.g.,=7
for (c = 9; c < maxgolumn; Cc++)
{
if (grid[r][c] == null)
System.out.print(".");
else
System.out.print("T");
} .
System.out.println();IwovecumortOdsphV“ew
} row on next line
}

James Tam

Advanced Java concepts

2/2/2015

26

Movement

* To make it look like the Tardis has ‘moved’.

* Set the destination (row/column) to refer to the Tardis object.
* Set the source (row/column) to null

Before move After move
Tardis

0] Null (Lobiect (0] Null Null
[1] Null Null [1] Null
__» Tardis

object

James Tam

Class World: Move

public void move()

{
// currentLocation 1D array stores Tardis location
int currentRow = currentLocation[0@];
int currentColumn = currentlLocation[1];

// Keep track of where the Tardis is currently located
int oldRow = currentRow;
int oldColumn = currentColumn;

// Store new (row/col) in 1D array (currentlLocation)
currentLocation =
grid[currentRow][currentColumn].calculateCoordinates

(maxRow, maxColumn);
Recall:
Tardis.currentCoordinates()
randomly generates a new
(row/column) location James Tam

Advanced Java concepts

2/2/2015

27

Class World: Move (2)

// Update temporary values with current location
currentRow = currentLocation[0];
currentColumn = currentLocation[1];

// Copy tardis from the old location to the new one.
grid[currentRow][currentColumn] = grid[oldRow][oldColumn];

// Check if tardis trying to move onto same square, don't
// 'wipe' if this is the case or tardis will be lost
// (Tardis object becomes a memory leak).
if ((currentRow == oldRow) &&
(currentColumn == oldColumn)) {
System.out.println(“Same location");

}
else {
// ‘wipe’ tardis off old location
grid[oldRow][oldColumn] = null;
1 James Tam
Class World: Move (3)
System.out.println("Tardis re-materializing");
display();
}

James Tam

Advanced Java concepts

2/2/2015

28

The Driver Class (Also The “Manager”)

public class Driver

{

public static void main(String [] args)
{
Scanner in = new Scanner(System.in);
World aWorld = new World();
int i;
for (i = 0; i < 10; i++)
{
alWorld.move();
System.out.println("Hit enter to continue");
in.nextLine();
}
System.out.println("\n<<<Tardis is out of energy,
end simulation>>> \n");

James Tam

Universally Accessible Constants

* What you currently know
— How to declare constants that are local to a method
class Driver {

main() {
final int A_CONST = 10;

}
* If you need constants that are accessible throughout your
program then declare them as class constants.

James Tam

Advanced Java concepts

2/2/2015

29

Declaring Class Constants

* Format:
public class <class name>

{

public final static <type> <NAME> = <value>;

* Example:
public class Person

{
public final static int MAX_AGE = 144;

* Note: Because constants cannot change it is okay to set the
access level to public.

James Tam

Accessing Class Constants

* Format (outside of the class definition)?:
<class name>.<constant name>;

* Example (outside of the class definition):
main()

{
System.out.println(“Max life span: “ + Person.MAX_AGE);

}

* Accessing a constant inside the methods of that class do not
require the name of the class
public class Person {

public void fun() { System.out.println(MAX_AGE); }

James Tam

Advanced Java concepts

2/2/2015

30

{

Introducing A New Concept With..Class Sheep!

public class Sheep

private String name;

public Sheep()

{
name = "No name";
}
public Sheep(String aName)
{
setName (aName);
}

public String getName() { return name;}

public void setName(String newName) { name = newName; }

James Tam

Advanced Java concepts

Image copyright unknown James Tam

We Create Several Sheep

2/2/2015

31

Question: Who Tracks The Size Of The Herd?

Image copyright unknown James Tam

Answer: None Of The Above!

*Information about all instances of a class should not be tracked
by an individual object.

*So far we have used instance fields.

*Each instance of an object contains it’s own set of instance fields

which can contain information unique to the instance.
public class Sheep

{
private String name;

¥ Object Object Object
name: Bill name: Jim name: Nellie

James Tam

Advanced Java concepts

2/2/2015

32

2/2/2015

The Need For Static (Class Attributes)

* Static fields: One instance of the attribute exists for the class
(not one attribute for each instance of the class)

Class Sheep
flockSize
Object Object Object
name: Bill name: Jim name: Nellie

James Tam

Static (Class) Methods

*Are associated with the class as a whole and not individual
instances of the class.

—Can be called without having an instances (because it’s
called through the class name not a reference/instance
name).

—Instance method:

Scanner in = new Scanner(System.in);
in.nextInt(); // refName.method()

—Class Method:
double squareRoot = Math.sqrt(9); // ClassName.method()

*Typically implemented for classes that are never instantiated
e.g., class Math.

James Tam

Advanced Java concepts 33

Accessing Static Methods/Attributes

* |nside the class definition

Format:
—<attribute or method name>

Example:
public Sheep ()
{
flockSize++;
}

James Tam

Accessing Static Methods/Attributes (2)

e Qutside the class definition

Format:
<Class name>.<attribute or method name>

Example:
Sheep.getFlockSize();

James Tam

Advanced Java concepts

2/2/2015

34

Static Data And Methods: UML Diagram

*Location of the online example:
—/home/219/examples/advanced/5classAttributes

Static attribute is

specified using N
underlining So Sheep

N
W-flockSize:int

Driver -name: String

+Sheep()

+Sheep(aName:String)
+getFlockSize():int
+getName():String

void

+setName(aName:String):

James Tam

{

Static Data And Methods: The Driver Class

public class Driver

public static void main(String [] args) {

System.out.println();
System.out.println("You start out with " +
Sheep.getFlockSize() +
sheep");
System.out.println("Creating flock...");

Sheep nellie = new Sheep("Nellie");
Sheep bill = new Sheep("Bill");
Sheep jim = new Sheep();

System.out.println("Current count " +
Sheep.getFlockSize());

James Tam

Advanced Java concepts

2/2/2015

35

Static Data And Methods: The Sheep Class

public class Sheep

{
private static int flockSize = @;
private String name;

public Sheep() {
flockSize++;
name = "No name";

}

public Sheep(String aName) {
flockSize++;
setName(aName);

}

public static int getFlockSize () { return flockSize; }
public String getName() { return name;}
public void setName(String newName) { name = newName; }

James Tam

Rules Of Thumb: Instance Vs. Class Fields

*|f a attribute can differ between instances of a class:
—The field probably should be an instance field (non-static)

*If the attribute field relates to the class (rather to a particular
instance) or to all instances of the class
—The field probably should be a static field of the class

James Tam

Advanced Java concepts

2/2/2015

36

Rule Of Thumb: Instance Vs. Class Methods

* If a method can be invoked regardless of the number of
instances that exist (e.g.., the method can be run when there
are no instances) then it probably should be a static method.

* |If it never makes sense to instantiate an instance of a class

then the method should probably be a static method.

— E.g., the class doesn’t have any variable attributes only static constants
such as class Math

* Otherwise the method should likely be an instance method.

James Tam

Static Vs. Final

*Static: Means there’s one instance of the attribute for the class
(not individual instances for each instance (object) of the class)

*Final: Means that the attribute cannot change (it is a constant)

public class Foo

{
public static final int numl= 1;
private static int num2; /* Rgre */
public final int num3 = 1; /* Why bother (waste) */
private int num4;
}

James Tam

Advanced Java concepts

2/2/2015

37

2/2/2015

An Example Class With A Static Implementation

public class Math

{
// Public constants
public static final double E = 2.71..
public static final double PI = 3.14..

// Public methods
public static int abs (int a);
public static long abs (long a);

}
* For more information about this class go to:
— http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

James Tam

Should A Class Be Entirely Static?

*Generally it should be avoided if possible because it often
bypasses many of the benefits of the Object-Oriented approach.
*Usually purely static classes (cannot be instantiated) have only
methods and no data (maybe some constants).
*Example (purely for illustration):
Math mathl = new Math();
Math math2 = new Math();
// What’s the difference? Why bother?
mathl.abs() vs. math2.abs();
*When in doubt DO NOT make attributes and methods static.

James Tam

Advanced Java concepts 38

2/2/2015

What You Should Know: Attributes Vs. Locals

* Attributes: Defined inside a class definition but outside the
body of a method.
class Person {
private int age;

* Locals: Defined inside the body of a method.
class Person {
public void Person(){
Scanner in = new Scanner(System.in);

James Tam

Reminder: Scope

* Attributes
— Declared within the body of a class but outside a method
— Accessible anywhere with the class methods
class Person {
private int age;
public Person() { age = 12; } Scope of

v attributes and
} methods

* Local variables
— Declared inside the body of a method and only accessible in that
method
class Person {
public Person () {
Scanner in = new Scanner(System.in); }-Scopeoflocah

James Tam

Advanced Java concepts 39

2/2/2015

Self Reference: The ‘This’ Reference

* From every (non-static) method of an object there exists a reference to the
object (called the “this” reference) !

This is one reason why methods must
be invoked via a reference name (the
Person fred = new Person(); . -
Person barn erson(); contcent-s of the refe.rence fred’ will be
fredtTethge(35); copied into the ‘this’ reference (so
} both point to the ‘Fred’ object).

main(String args []) {

public class Person {
private int age;
public void setAge(int anAge) {

age = anAge; . I
} & & The ‘this’ reference is implicitly

passed as a parameter to all non-
} static methods. One use of ‘this’ is
to distinguish which object’s method
is being invoked (in this case Fred vs.

Barney)
1 Similar to the ‘self” keyword of Python except that “this’ is a syntactically enforced name. James Tam
The ‘This’ Reference Is Automatically
Referenced Inside (Non-Static) Methods
public class Person {
private int age;
public void setAge(int anAge) {
// These two statements are equivalent
age = anAge;
this.age = anAge;
}
}
James Tam

Advanced Java concepts 40

New Terminology

* Explicit parameter(s): explicitly passed (you can see them when
the method is called and defined).
fred.setAge(10); // 10 explicit
barney.setAge(num); // num explicit

public void setAge(int age) { ... } // age explicit

* Implicit parameter: implicitly passed into a method
(automatically passed and cannot be explicitly passed): the
‘this’ reference.

public void setAge(int age) { ... } // ‘this’ is implicit

James Tam

Benefits Of ‘This’: Attributes

* Another side benefit is the this reference can make it very
clear which attributes are being accessed/modified.

public class Person
Parameter

{ (local
private int age; variable)
Iage’
public void setAge(int age) {
this.age = age;

}

Attribute
‘age

’

James Tam

Advanced Java concepts

2/2/2015

41

Benefits Of ‘This’: Parameters

* Another side benefit is the this reference can make it clear
which object is being accessed e.g., when a class method takes
as a explicit parameter an instance of that class?!

main (String [] args) {
Person fred = new Person();
Person barney = new Person();
barney.nameBestBuddy(fred); // JIT: Explicit? Implicit?
}
// JT: What will be the output?
public void nameBestBuddy(Person aPerson) {
println(this.name + “ best friend is “ + aPerson.name);

1 JT: more on this one later — see the ‘equals ()’ method James Tam

Benefits Of ‘This’: Scope

* Recall: according to scoping rules, local variables are not
accessible outside of that function or method (unless returned
back to the caller or passed into another method).

main (String [] args) { main()
int age = 27;
Person jim = new Person(); 389

jim.setAge(age);

) sufH e[

class Person { 5

public void setAge(int age) {
this.age = age;

} jing\(imp) 27 (gxp)
\ 1
. % !
jim.setAge(V)

Normally the object referred to by the ‘jim’ reference
not accessible outside of main() but the ‘this’

. 2 OV this B/ age
reference contains it’s address (implicit pass by

reference) James Tam

Advanced Java concepts

2/2/2015

42

Static Methods: No ‘This’ Reference

* Recall: static methods do not require an object to be
instantiated because they are invoked via the class name not a
reference name.

int result = Math.abs(-12);

* That means static methods do not have the implicit ‘this’
parameter passed in.

* Also recall | said for now avoid [for the ‘Driver’ class]:
— Defining attributes for the Driver
— Defining methods for the Driver (other than the main method)

James Tam
Static Methods: No ‘This’ Reference (2)
public class Driver Driver.java:6:
{ error: non-static

variable num cannot
be referenced from a
static context

private int num;
public static void main(Strin

args)

*Main() must be static! Automatically called when the program runs via ‘java Driver’ before
any other code.

elf main() were non-static it would require an object to be instantiated (which must occur
inside of a method).

eBut there would be no way to call that method that instantiates an object without a starting
static method.

eBecause main() must be static, it has no “this’ implicit parameter which in turn means that
non-static attributes like ‘num’ cannot be accessed (although static attributes/methods
accessible): Driver.static_name or just via static_name James Tam

Advanced Java concepts

2/2/2015

43

Mutable Vs. Immutable Types

* Mutable types
— Original memory can be modified
int num = 666;
num = 777;

* Immutable types
— The original memory location cannot be modified

— Assigning new values will create a new memory location and leave the
original untouched.

String s1 = “abc”;

String s2 sl;

sl = “xyz”;

System.out.println(sl + “ “ + s2);

James Tam

Mutable Vs. Immutable

* Advantage of mutable * Advantage of immutable
types: speed types: ‘security’

James Tam

Advanced Java concepts

2/2/2015

44

Mutable Advantage: Speed

* Location of full examples:

— /home/219/examples/advanced/6mutableImmutable/speed

public class StringExample {
public static void main
(String [] args) {
String s = "@";
int i;
for (i = 1; i < 100000; i++)
s =5s + i;

public class StringBufferExample {
public static void main
(String [] args) {
StringBuffer s;
int i;
s = new StringBuffer("0");
for (i = 1; i < 100000; i++)
s = s.append(i);

James Tam

Immutable Advantage: Security

* Location of the full example:

— /home/219/examples/advanced/6mutableImmutable/security

James Tam

Advanced Java concepts

2/2/2015

45

{

Class SecurityExample

public class SecurityExample

private String s;
private StringBuffer sb;

public SecurityExample() {
s = new String("Original s");
sb = new StringBuffer("Original sb");

}

public String getS() {
return s;

}

public StringBuffer getSB() {
return sb;

}

James Tam

{

The Driver Class

public class Driver

public static void main(String [] args)
{
SecurityExample se = new SecurityExample();
String s;
StringBuffer sb;

System.out.println("Originals");
System.out.println("\t" + se.getS());
System.out.println("\t" + se.getSB());

s = se.getS();
sb = se.getSB();

James Tam

Advanced Java concepts

2/2/2015

46

The Driver Class (2)

sb.delete(0@,sb.length());
sb.append("lolz! mucked ur data :P");

s = "lolz! mucked ur dat st
System.out.println(); ' . ur data
z! macked ur
System.out.println("After modfications");
System.out.println("Values of locals");
System.out.println("\t\tString=" + s);
System.out.println("\t\tStringBuffer=" + sb);
System.out.println("\tValues of attributes");
System.out.println("\t\tString=" + se.getS());
System.out.println("\t\tStringBuffer=" + se.getSB());

Values of attributes

String ginal =
StringBuffer=1clz! mucked ur data :P

=
data :F

James Tam

Automatic Garbage Collection Of Java

References

f1(Address of a “F00”)

References

Dynamic memory

Object (Instance of a “Fo00”)

G

f2 (Address of a “Fo0”)

Object (Instance of a “Fo0”)

G

*Dynamically allocated memory is automatically freed up when it
is no longer referenced (Foo = a class) e.g., Foo f1 = new Foo();

—Foo f2 = new Foo();

James Tam

Advanced Java concepts

2/2/2015

47

Automatic Garbage Collection Of
Java References (2)

*Dynamically allocated memory is automatically freed up when it
is no longer referenced e.g., f2 = null;

References Dynamic memory

fl Object (A “F00”)

G

f Object (A “F00”)

null

James Tam

Automatic Garbage Collection Of
Java References (3)

*Dynamically allocated memory is automatically freed up when
itis no longer referenced e.g., f2 = null; (recall thata null
reference means that the reference refers to nothing, it doesn’t
contain an address).

References Dynamic memory

f1 Object (A “F00”)

G

null

James Tam

f2 ObjeCt (A “ FOO”) / Image copyright unknown}
|

Advanced Java concepts

2/2/2015

48

2/2/2015

Caution: Not All Languages Provide Automatic
Garbage Collection!

*Some languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

*In this case dynamically allocated memory must be manually
freed up by the programmer.

*Memory leak: memory that has been dynamically allocated
(such as via the Java ‘new’ keyword’) but has not been freed up
after it’s no longer needed.

—Memory leaks are a sign of poor programming style and can result in
significant slowdowns.

James Tam

The Finalize() Method

* The Java interpreter tracks what memory has been dynamically
allocated via ‘new’

* It also tracks when memory is no longer referenced.

* When the system isn’t busy, the Automatic Garbage Collector
is invoked.

* If an object has a finalize method implemented then it is
invoked:

— The finalize is a method written by the programmer to free up non-
memory resources e.g., closing and deleting temporary files created by
the program, closing network connections.

— This method takes no arguments and returns no values (i.e., returns
void)

— Dynamic memory is NOT freed up by this method.

» After the finalize method finishes execution, the dynamic
memory is freed up by the Automatic Garbage Collector.

James Tam

Advanced Java concepts 49

The Finalize() Method

* Example sequence:

public class Foo
{ fl

int num; [ZE}——————————*

public Foo() { num = 1; }

public Foo(int aValue) { num = aValue; }

}

Foo f1 = new Foo ();

The Finalize() Method

* Example sequence:
public class Foo
{ f1
int num;
public Foo() { num = 1; }
public Foo(int aValue) { num = aValue; }

}

Foo f1 = new Foo();
f1 = new Foo(10);

num

Advanced Java concepts

2/2/2015

50

* Example sequence:
public class Foo

Foo f1 = new Foo();
f1 = new Foo(10);

{

int num;

public Foo() { num = 1; }

public Foo(int aValue) { num = aValue; }
}

The Finalize() Method

f1

num

Don’t know when

Image copyright unknown

* Example sequence:
public class Foo

Foo f1 = new Foo();
f1 = new Foo(10);

f1

{

int num;

public Foo() { num = 1; }

public Foo(int aValue) { num = avalue; }
}

The Finalize() Method

f1

num

Don’t know when

Image copyright unknown

.finalize()

Advanced Java concepts

2/2/2015

51

The Finalize() Method

* Example sequence:

public class Foo

{ f1
int num;
public Foo() { num = 1; }
public Foo(int aValue) { num = aValue; }

}

Foo f1 = new Foo();
f1 = new Foo(10);

fl.finalize()

o]
1 N

num

Don’t know when

Image copyright unknown

Example Application Of finalize()

* As a sheep object gets de-allocated from memory (memory is
freed up because the object is no longer referenced) the
finalize() method could update the sheep count.

public class Sheep

{
private int flockSize = ©;
public Sheep() {
flockSize++;
}
public void finalize() {
flockSize--;
}
}

Advanced Java concepts

2/2/2015

52

2/2/2015

Displaying The Current State Of Objects

* The toString() method is commonly implemented to allow
determination of the state of a particular object (contents of
important attributes).

* This method returns a string representation of the state of an
object.

* It will automatically be called whenever a reference to an

object is passed as a parameter is passed to the
“print()/println()” method.

toString() Example

* Location of the full example:
— /home/219/examples/advanced/7toString

Advanced Java concepts 53

{

Class Person

public class Person

private int height;
private int weight;
private String name;

public Person(String name, int height, int weight)
{

this.name = name;
this.height = height;
this.weight = weight;

Class Person (2)

public String getName()

{
return(name);
}
public int getHeight()
{
return(height);
}
public int getWeight()
{
return(weight);
}

Advanced Java concepts

2/2/2015

54

Class Person (3)

public String toString()

{
String s;
s = "Name: " + name + "\t";
s = s + "Height: " + height + "\t";
s = s + "Weight: " + weight + "\t";
return(s);

}

The Driver Class

public class Driver
{
public static void main(String [] args)
{
Person jim = new Person("Jim",69,160);
System.out.println("Atrributes via accessors()");
System.out.println("\t" + jim.getName() + " " +
jim.getHeight() +
" "+ jim.getWeight());

Atrribut

System.out.println("Atrributes via toString()");
System.out.println(jim);

} Atrributes via toString()
} Hame: Jim Height: &9 Weilght:

Advanced Java concepts

2/2/2015

55

Comparing Objects

* Recall from the discussion of parameter passing (pass by
reference) that a reference contains the address of an object or
array.

* Using the comparison operator on the references ‘==" will only
determine if the address (and not data) is the same.

String sl = “hi”; String object
String s2 = “hi”; s1| S | i |
|
. String object
if (s1 == s2)
s2| S
| “hi” |

Comparing Objects (2)

* Either each attribute of each object must be manually
compared or else some form of equals () method must be
implemented.

* Class String has two methods:
— compareTo() # ABC not same as Abc
— compareToIgnoreCase() # ABC same as abc

Advanced Java concepts

2/2/2015

56

Implementing Equals ()

* Location of the full example:
— /home/219/examples/advanced/8equals

Class Person

public class Person {
private int height;
private int weight;

public Person(int height, int weight) {
this.height = height;
this.weight = weight;

}

public int getHeight() {
return(height);
}

public int getWeight() {
return(weight);

}

Advanced Java concepts

2/2/2015

57

Class Person (2)

public void setHeight(int height) {
this.height = height;
}

public void setWeight(int weight) {
this.weight = weight;
}
Implicit: Jim Explicit: Bob
public boolean equals(Person compareTo) {
boolean flag = true;
if (this.height != compareTo.getHeight() ||
this.weight != compareTo.getWeight())
flag = false;
return(flag);

The Driver Class

public class Driver

{
public static void main(String [] args)

{
Person jim
Person bob

new Person(69,160);
new Person(72,175);

Advanced Java concepts

2/2/2015

58

new

new

Compare add:

Penson(69,168) ; The Driver Class (2)

Person(72,175);

=3

nt addresses

system.out.println("Different data, addresses");
System.out.println("Compare data via accessors()");
if (jim.getHeight() == bob.getHeight() &&
jim.getWeight() == bob.getWeight())
System.out.println("\tObjects same data");
else
System.out.println("\tNot equal");

Compare data via a
Hot equal

System.out.println("Compare data
if (jim.equals(bob) == true)
System.out.println("\tObjects same data");

Compare data via edquals()

else ot equal

System.out.println("\tNot equa B

System.out.println("Compare addresses");
if (jim == bob)
System.out.println("\tSame address");
else
System.out.println("\tDifferent addresses");

Person(72,175); # via set()
Person(72,175); The Driver Class (3)

System.out.println();
System.out.println("Same data, different addresses");
jim.setHeight(72);
jim.setWeight(175);
if (jim.equals(bob) == true)
System.out.println("\tObjects same data");
else
System.out.println("\tNot equal");

System.out.println("Compare addresses");
if (jim == bob)
System.out.println("\tSame address");
else
System.out.println("\tDifferent addresses");

Advanced Java concepts

2/2/2015

59

2/2/2015

Person(72,175); # via set()
Person(72,175); The Driver Class (4)

System.out.println();
System.out.println("Same data, different addresses");
jim.setHeight(72);
jim.setWeight(175);
if (jim.equals(bob) == true)
System.out.println("\tObjects same data");
else
System.out.println("\tNot equal");

System.out.println("Compare addresses");
if (jim == bob)
System.out.println("\tSame address");
else
System.out.println("\tDifferent addresses");

jim = bob;

The Driver Class (5)

System.out.println();
System.out.println("Same addresses");
jim = bob;
if (jim == bob)
System.out.println("\tSame address");
else
System.out.println("\tDifferent addresses");

Advanced Java concepts 60

2/2/2015

After This Section You Should Now Know

* References
— How references and objects are related
— The difference between a deep vs. shallow copy

— How to check for if objects are identical (on a field-by-field basis and by
implementing an equals () method

— What is the difference between comparing references vs. objects

* How the two methods of parameter passing work, what types
are passed using each mechanism

* What are the benefits of employing the indirect mechanism of
references-data vs. just data variables

* What is a wrapper class and what is its purpose

James Tam

After This Section You Should Now Know (2)

* How to pass arrays as parameters and return them from
methods

* Arrays of 'objects’
— Why they are really arrays of references
— How to declare such an array, create and access elements

* How could a simple simulation be implemented using an array
of references

* How to declare class constants
* Static attributes and methods
— How to create statics
— How to access statics

— When something should be static vs. non-static (instance)
— The difference between static and final

James Tam

Advanced Java concepts 61

2/2/2015

After This Section You Should Now Know (3)

* Design issues
— When should something be declared as local vs. an attribute
— How to determine which attributes and methods should be part of
which classes
* What is the 'this' reference
— When it is and is not an implicit parameter
— What's the difference between implicit and explicit parameters
— What are the benefits of having a this parameter

James Tam

After This Section You Should Now Know (4)

* Mutable vs. immutable types

— What is the difference

— What is the advantage of each type

— What is automatic garbage collection
* The finalize() method

— How to define one

— When is it called

— What are common uses for this method

— How is it related to automatic garbage collection
* How to display the current state of an object by implementing

a toString() method

James Tam

Advanced Java concepts 62

slide 125

Copyright Notification

* “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

James Tam

Advanced Java concepts

2/2/2015

63

