
Introduction to Object-Oriented programming 1

James Tam

Introduction To Object-
Oriented Programming

This section includes introductions to
fundamental object-oriented principles
such as encapsulation, overloading,
relationships between classes as well
the object-oriented approach to design.

James Tam

Reminder: What You Know

•There are different approaches to writing computer programs.

•They all involve decomposing your programs into parts.

•What is different between the approaches is (how the
decomposition occurs)/(criteria used)

•There approach to decomposition you have been introduced
to thus far:
- Procedural

Introduction to Object-Oriented programming 2

James Tam

An Example Of The Procedural Approach
(Presentation Software)

•Break down the program by what it does (described with
actions/verbs)

Filing Editing Helping …

Creating

new

document

Opening a

document

Saving a

document

… Exiting

program

PowerPoint

James Tam

What You Will Learn

•How to break your program down into objects (“Object-
Oriented programming”)

•This and related topics comprise the remainder of the course

Introduction to Object-Oriented programming 3

James Tam

•Break down the program into entities (classes/objects -
described with nouns)

An Example Of The Object-Oriented Approach (Simulation)

Zoo

Animals Buildings

Visitors

Staff

Admin

Animal

care

Lions

Tigers

Bears (oh

my!)

ETC.

James Tam

Classes/Objects

•Each class of object includes descriptive data.
- Example (animals):

•Species
•Color
•Length/height
•Weight
•Etc.

•Also each class of object has an associated set of actions
- Example (animals):

•Eating
•Sleeping
•Excreting
•Etc.

Introduction to Object-Oriented programming 4

James Tam

Example Exercise: Basic Real-World Alarm
Clock

•What descriptive data is needed?

•What are the possible set of actions?

James Tam

Additional Resources

•A good description of the terms used in this section (and terms
used in some of the later sections).
http://docs.oracle.com/javase/tutorial/java/concepts/

•A good walk through of the process of designing an object-
oriented program, finding the candidate objects e.g., how to
use the ‘find a noun’ approach and some of the pitfalls of this
approach.
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.ht
ml

http://docs.oracle.com/javase/tutorial/java/concepts/
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.html
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.html

Introduction to Object-Oriented programming 5

James Tam

Types In Computer Programs

•Programming languages typically come with a built in set of
types that are known to the translator
int num;

// 32 bit signed whole number

•Unknown types of variables cannot be arbitrarily declared!
Person tam;
// What info should be tracked for a Person

// What actions is a Person capable of

// Compiler error!

James Tam

A Class Must Be First Defined

•A class is a new type of variable.

•The class definition specifies:
- What descriptive data is needed?

•Programming terminology: attributes = data (new definition)

- What are the possible set of actions?
•Programming terminology: methods = actions (new definition)

Introduction to Object-Oriented programming 6

James Tam

Defining A Java Class

Format:
public class <name of class>
{
 attributes
 methods
}

Example (more explanations coming):
 public class Person

 {

 private int age;

 public Person() {

 age = in.nextInt();

 }

 public void sayAge () {

 System.out.println("My age is " + age);

 }

 }

James Tam

Defining The Attributes Of A Class In Java

•Attributes can be variable or constant (includes the ‘final’
keyword), for now stick to the former.

•Format:
 <access modifier>1 <type of the attribute> <name of the attribute>;

•Example:
 public class Person

 {

 private int age;

 }

1) Although other options may be possible, attributes are almost always set to private (more on this
later).

Introduction to Object-Oriented programming 7

James Tam

What Are Attributes

•Data that describes each instance or example of a class.

Age: 35
Weight: 192

Age: 50
Weight: 125

Age: 1.5
Weight: 7

James Tam

Defining The Methods Of A Class In Java

Format:
<access modifier>1 <return type2> <method name> (<p1 type> <p1 name>, (<p2
type> <p2 name>…)

 {

 <Body of the method>

 }

Example:
 public class Person

 {

 public void sayAge() {

 System.out.println("My age is " + age);

 }

 }

1) For now set the access modifier on all your methods to ‘public’ (more on this later).

2) Return types: includes all the built-in ‘simple’ types such as char, int, double…arrays
and classes that have already been defined (as part of Java or third party extras)

Introduction to Object-Oriented programming 8

James Tam

What Are Methods

•Possible behaviors or actions for each instance (example) of a
class.

Walk()
Talk()

Walk()
Talk()

Fly()

Swim()

James Tam

Instantiation

•Definition: Instantiation, creating a new instance or example of
a class.

•Instances of a class are referred to as objects.

•Format:
 <class name> <instance name> = new <class name>();

•Examples:
 Person jim = new Person();

 Scanner in = new Scanner(System.in);

Creates new object

Variable names: ‘jim’,
‘in’

Introduction to Object-Oriented programming 9

James Tam

•A special method: used to initialize the attributes of an object as the objects
are instantiated (created).

•The constructor is automatically invoked whenever an instance of the class
is created e.g., Person aPerson = new Person();

Constructor

Constructor

Call to constructor
(creates something
‘new’)

Object

x

y

z

Object

x = 1

y = 2

z = 3

James Tam

Calling Methods (Outside The Class)

•You’ve already done this before with pre-created classes!

•First create an object (previous slides)

•Then call the method for a particular variable.

•Format:
<instance name>.<method name>(<p1 name>, <p2 name>…);

•Examples:
 Person jim = new Person();

 jim.sayName();

// Previously covered example
Scanner in = new Scanner(System.in);
System.out.print("Enter your age: ");
age = in.nextInt();

Introduction to Object-Oriented programming 10

James Tam

Putting It All Together: First Object-Oriented
Example

•Online example:
-It resides under the path:
/home/219/examples/introOO/first

-There’s two Java files: Driver.java, Person.java

James Tam

Class Driver

public class Driver

{

 public static void main(String [] args)

 {

 Person jim = new Person();

 jim.sayAge();

 }

}

Introduction to Object-Oriented programming 11

James Tam

Class Person

public class Person

{

 private int age;

 public Person()

 {

 Scanner in = new Scanner(System.in);

 System.out.print("Enter age: ");

 age = in.nextInt();

 }

 public void sayAge()

 {

 System.out.println("My age is " + age);

 }

}

James Tam

Creating An Object

•Two stages (can be combined but don’t forget a step)
- Create a variable that refers to an object e.g., Person jim;

- Create a *new* object e.g., jim = new Person();
•The keyword ‘new’ calls the constructor to create a new object in memory

- Observe the following
Person jim;

jim = new Person(12);

jim = new Person(22);

jim null

Jim is a reference to a Person
object

age =12

age =22

Introduction to Object-Oriented programming 12

James Tam

main() Method

•Language requirement: There must be a main() method - or
equivalent – to determine the starting execution point.

•Style requirement: the name of the class that contains main()
is often referred to as the “Driver” class.
- Makes it easy to identify the starting execution point in a big program.

•Do not instantiate instances of the Driver1

•For now avoid:
- Defining attributes for the Driver1

- Defining methods for the Driver (other than the main() method)1

1 Details will be provided later in this course

James Tam

Laying Out Your Program

•The code for each class should reside in its own separate file.

•All the Java source code files for a single program should reside
in the same directory.

class Person

{

 : :

}

Person.java

class Driver

{

 : :

}

Driver.java

Introduction to Object-Oriented programming 13

James Tam

Compiling Multiple Classes

•One way (safest) is to compile all code (dot-Java) files when
any code changes.

•Example:
- javac Driver.java

- javac Person.java

- (Alternatively use the ‘wildcard’): javac *.java

James Tam

Why Must Classes Be Defined

•Some classes are already pre-defined (included) in a
programming language with a list of attributes and methods
e.g., String

•Why don’t more classes come ‘built’ into the language?

•The needs of the program will dictate what attributes and
methods are needed.

Introduction to Object-Oriented programming 14

James Tam

Terminology: Methods Vs. Functions

•Both include defining a block of code that be invoked via the
name of the method or function (e.g., print())

•Methods a block of code that is defined within a class
definition (Java example):

public class Person
{
 public Person() { ... }

 public void sayAge() { ... }
}

• Every object whose type is this class (in this case a Person)
will be able to invoke these class methods.
Person jim = new Person();
jim.sayAge();

James Tam

Terminology: Methods Vs. Functions (2)

•Functions a block of code that is defined outside or independent of a class
(Python example – it’s largely not possible to do this in Java):
Defining method sayBye()

class Person:

 def sayBye(self):

 print(“Hosta lavista!”)

Defining function: sayBye()

def sayBye():

 print(“Hosta lavista!”)

Functions are called without creating an object

sayBye()

Method are called via an object

jim = Person()

jim.sayBye()

Introduction to Object-Oriented programming 15

James Tam

Methods Vs. Functions: Summary & Recap

Methods

•The Object-Oriented
approach to program
decomposition.

•Break the program down into
classes.

•Each class will have a number
of methods.

•Methods are invoked/called
through an instance of a class
(an object).

Functions

•The procedural (procedure =
function) approach to
program decomposition.

•Break the program down into
functions.

•Functions can be invoked or
called without creating any
objects.

James Tam

First Example: Second Look

Calls in Driver.java

Person jim = new Person();

jim.sayAge();

Person.java

public class Person {

 private int age;

 public Person() {

 age = in.nextInt();

 }

 public void sayAge() {

 System.out.println("My age

 is " + age);

 }

}

More is needed:
•What if the attribute ‘age’ needs to
be modified later?
•How can age be accessed but not
just via a print()?

Introduction to Object-Oriented programming 16

James Tam

Viewing And Modifying Attributes

1) Accessor methods: ‘get()’ method
- Used to determine the current value of an attribute
- Example:
 public int getAge()
 {
 return(age);
 }

2) Mutator methods: ‘set()’ method
- Used to change an attribute (set it to a new value)
- Example:
 public void setAge(int anAge)
 {
 age = anAge;
 }

James Tam

V2: First O-O Example

Location:
/home/219/examples/introOO/secondAccesorsMutators

Introduction to Object-Oriented programming 17

James Tam

Class Person

•Notable differences: constructor, getAge() replaces
sayAge()

 public class Person
{
 private int age;
 public Person() {
 …
 age = in.nextInt();
 }

 public void sayAge() {
 System.out.println("My age
 is " + age);
 }
}

public class Person
{
 private int age;
 public Person() {
 age = 0;
 }
 public int getAge() {
 return(age);
 }

 public void setAge
 (int anAge){
 age = anAge;
 }
}

James Tam

Class Driver

public class Driver

{

 public static void main(String [] args)

 {

 Person jim = new Person();

 System.out.println(jim.getAge());

 jim.setAge(21);

 System.out.println(jim.getAge());

 }

}

Introduction to Object-Oriented programming 18

James Tam

Calling Methods: Inside The Class

•You have seen this implicitly in the examples but here are the
explicit syntax requirements you need to know well.

•Calling a method inside the body of the class (where the
method has been defined)
- You can just directly refer to the method (or attribute)

 public class Person {

 private int age;

 public void birthday() {

 becomeOlder(); // access method

 }

 public void becomeOlder() {

 age++; // access attribute

 }

James Tam

Calling Methods: Outside The Class

•Calling a method outside the body of the class (i.e., in another
class definition)

•The method must be prefaced by a variable (actually a
reference to an object – more on this later).
public class Driver {

 public static void main(String [] args) {

 Person bart = new Person();

 Person lisa = new Person();

 // Incorrect! Who ages?

 becomeOlder();

 // Correct. Happy birthday Bart!

 bart.becomeOlder();

 }

}

Introduction to Object-Oriented programming 19

James Tam

Constructors

•Constructors are used to initialize objects (set the attributes) as
they are created.

•Different versions of the constructor can be implemented with
different initializations e.g., one version sets all attributes to
default values while another version sets some attributes to
non-default values (value of parameters passed in).

•Method overloading: same method name, different parameter
list.
 public Person(int anAge) { public Person() {

 age = anAge; age = 0;

 name = "No-name"; name = "No-name";

 }
}

 // Calling the versions
 Person p1 = new Person(100); Person p2 = new Person();

James Tam

Example: Multiple Constructors

•Location:
/home/219/examples/introOO/thirdContructorOverloading

Introduction to Object-Oriented programming 20

James Tam

Class Person

public class Person

{

 private int age;

 private String name;

 public Person()

 {

 System.out.println("Person()");

 age = 0;

 name = "No-name";

 }

James Tam

Class Person(2)

 public Person(int anAge) {

 System.out.println("Person(int)");

 age = anAge;

 name = "No-name";

 }

 public Person(String aName) {

 System.out.println("Person(String)");

 age = 0;

 name = aName;

 }

 public Person(int anAge, String aName) {

 System.out.println("Person(int,String)");

 age = anAge;

 name = aName;

 }

Introduction to Object-Oriented programming 21

James Tam

Class Person (3)

 public int getAge() {

 return(age);

 }

 public String getName() {

 return(name);

 }

 public void setAge(int anAge) {

 age = anAge;

 }

 public void setName(String aName) {

 name = aName;

 }

}

James Tam

Class Driver

public class Driver

{

 public static void main(String [] args)

 {

 Person jim1 = new Person(); // age, name default

 Person jim2 = new Person(21); // age=21

 Person jim3 = new Person("jim3"); // name=“jim3”

 Person jim4 = new Person(65,"jim4");

 // age=65, name = “jim4”

 System.out.println(jim1.getAge() + " " +

 jim1.getName());

 System.out.println(jim2.getAge() + " " +

 jim2.getName());

 System.out.println(jim3.getAge() + " " +

 jim3.getName());

 System.out.println(jim4.getAge() + " " +

 jim4.getName());

 }

}

Introduction to Object-Oriented programming 22

James Tam

Terminology: Method Signature

•Method signatures consist of: the type, number and order of
the parameters.

•The signature can determine which method should be called:
Person p1 = new Person();

Person p2 = new Person(25);

James Tam

More On Method Overloading

•Methods with the same name but a different method
signature.

•Used for methods that implement similar but not identical
tasks.

•Examples include class constructors but this is not the only
type of overloaded methods:

System.out.println(int)

System.out.println(double)

 etc.

For more details on class System see:
- http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

Introduction to Object-Oriented programming 23

James Tam

Method Overloading: Things To Avoid

• Distinguishing methods solely by the order of the
parameters.

• Overloading methods but having an identical
implementation.

• Why are these things bad?

James Tam

Method Signatures And Program Design

•Unless there is a compelling reason do not change the
signature of your methods!

class Foo

{

 void fun()

 {

 }

}

Before:
class Foo

{

 void fun(int num)

 {

 }

}

After:

public static void main ()

{

 Foo f = new Foo();

 f.fun()

}

This change

has broken

me! 

Introduction to Object-Oriented programming 24

James Tam

UML1 Representation Of A Class

<Name of class>

-<attribute name>: <attribute type>

+<method name>()

1 UML = Unified Modeling Language

Person
-age: int

+getAge()

+setAge()

James Tam

UML1 Class(Increased Details)

<Name of class>

-<attribute name>: <attribute type>

+<method name>(p1: p1type; p2 : p2 type..) :

 <return type>

1 UML = Unified Modeling Language

Person
-age:int

+setAge(anAge:int):void

+getAge():int

Introduction to Object-Oriented programming 25

James Tam

Why Bother With UML?

•It’s the standard way of specifying the major parts of a
software project.

•It combined a number of different approaches and has become
the standard notation.

James Tam

Local Variables Vs. Attributes

•Example:
- What is/are local variables vs. attributes

- When should something be local vs. an attribute

public class Person {

 private String [] childrenName = new String[10];

 private int age;

 public nameFamily() {

 int i;

 Scanner in = new Scanner(System.in);

 for (i = 0; i < 10; i++) {

 childrenName[i] = in.nextLine();

 }

 }

}

Introduction to Object-Oriented programming 26

James Tam

•Local variables (also applies to local constants – more later)
- Declared within the body of a method.

- Scope: They can only be used or accessed in that method (after they have
been declared).

- When to use: Typically store temporary information that is used only in
that method.

Local Variables

public nameFamily()

{

 int i;

 Scanner in = new Scanner(System.in);

 for (i = 0; i < 10; i++)

 {

 childrenName[i] = in.nextLine();

 }

}

Scope
of ‘i’
(int)

Scope of
‘in’
(Scanner)

James Tam

Attributes

•Variable attributes (ignore constants for now)
- Declared inside the body of a class definition but outside the body of that

classes’ methods.

- Typically there is a separate attribute for each instance of a class and it
lasts for the life of the object.
•Created and initialized when the object is created by calling the
constructor.

class Person

{

 private String [] childrenName = new String[10];

 private int age;

 /*

 For each person it’s logical to track the age and

 the names any offspring.

 */

}

Introduction to Object-Oriented programming 27

James Tam

Scope Of Attributes (And Methods)

•Anywhere within the class definition.
class Person
{
 private int age;

 public nameFamily()
 {
 int i;
 Scanner in = new Scanner(System.in);
 for (i = 0; i < 10; i++)
 {
 childrenName[i] = in.nextLine();
 }
 }
 // The scope of any attributes or methods
 // declared or defined here is the entire class
 // definition.
}

Scope
of
‘age’

Scope of
‘nameFamily’

James Tam

Class Scope: Example

class Person

{

 int age;

 public Person(int anAge) {

 setAge(anAge);

 }

 public void setAge(int anAge) {

 age = anAge

 }

}

class Driver

{

 public static void main(String [] args) {

 setAge(123)

 }

}

setAge() can be
called within the
constructor of the
same class because it
is within scope

Methods and attributes
cannot be accessed
outside of the class
scope

Age can be accessed
within the methods of
this class because it is
within scope

Introduction to Object-Oriented programming 28

James Tam

Scoping Rules

•Rules of access
1. Look for a local identifier

2. Look for an attribute

• General example
public class Person

{

 public void method()

 {

 x = 12;

 }

} Reference to

an identifier

First: look for the

definition of a local

identifier e.g., “int x;”

Second: look for the

definition of an attribute

e.g., “private int x;”

James Tam

Shadowing

•The name of a local matches the name of an attribute.

•Because of scoping rules the local identifier will ‘hide’ access to
the attribute.

•This is a common logic error!
public class Person {

 private int age = -1;

 public Person(int newAge) {

 int age; // Shadows/hides attribute

 age = newAge;

 }

 public void setAge(int age) { // Shadow/hide attribute

 age = age;

 }

}

Person aPerson = new Person(0); // age is still -1

aPerson.setAge(18); // age is still -1

Introduction to Object-Oriented programming 29

James Tam

Back To The ‘Private’ Keyword

•It syntactically means this part of the class cannot be accessed
outside of the class definition.
- You should always do this for variable attributes, very rarely do this for

methods (more later).

•Example
public class Person {

 private int age;

 public Person() {

 age = 12; // OK – access allowed here

 }

}

public class Driver {

 public static void main(String [] args) {

 Person aPerson = new Person();

 aPerson.age = 12; // Syntax error: program won’t

 // compile!

 }

}

James Tam

Encapsulation/Information Hiding

•Protects the inner-workings (data) of a class.

•Only allow access to the core of an object in a controlled
fashion (use the public parts to access the private sections).

- Typically it means public methods accessing private attributes via
accessor and mutator methods.

private

data

public

method

public

method

public

method

set data

(mutator

method)

get data

(accessor

method)

Introduction to Object-Oriented programming 30

James Tam

How Does Hiding Information Protect Data?

•Protects the inner-workings (data) of a class
- e.g., range checking for inventory levels (0 – 100)

•Location of the online example:
-/home/219/examples/introOO/fourthNoProtection

Driver Inventory
+stockLevel: int

+Inventory()

James Tam

Class Inventory

public class Inventory

{

 public int stockLevel;

 public Inventory()

 {

 stockLevel = 0;

 }

}

Introduction to Object-Oriented programming 31

James Tam

Class Driver

public class Driver

{

 public static void main (String [] args)

 {

 Inventory chinook = new Inventory ();

 chinook.stockLevel = 10;

 System.out.println ("Stock: " + chinook.stockLevel);

 chinook.stockLevel = chinook.stockLevel + 10;

 System.out.println ("Stock: " + chinook.stockLevel);

 chinook.stockLevel = chinook.stockLevel + 100;

 System.out.println ("Stock: " + chinook.stockLevel);

 chinook.stockLevel = chinook.stockLevel - 1000;

 System.out.println ("Stock: " + chinook.stockLevel);

 }

}

James Tam

Utilizing Information Hiding: An Example

•Location of the online example:
-/home/219/examples/introOO/fifthEncapsulation

+MIN: int

+MAX: int

+CRITICAL: int

-stockLevel: int

+inventoryTooLow():boolean

+add(amount : int)

+remove(amount : int)

+showStockLevel()

Inventory

Driver

Introduction to Object-Oriented programming 32

James Tam

Class Inventory

public class Inventory

{

 public final int CRITICAL = 10;

 public final int MIN = 0;

 public final int MAX = 100;

 private int stockLevel = 0;

 public boolean inventoryTooLow()

 {

 if (stockLevel < CRITICAL)

 return(true);

 else

 return(false);

 }

James Tam

Class Inventory (2)

 public void add(int amount)

 {

 int temp;

 temp = stockLevel + amount;

 if (temp > MAX)

 {

 System.out.println();

 System.out.print("Adding " + amount +

 " item will cause stock ");

 System.out.println("to become greater than " + MAX + "
units

 (overstock)");

 }

 else

 {

 stockLevel = temp;

 }

 }

Introduction to Object-Oriented programming 33

James Tam

Class Inventory (3)

 public void remove(int amount)

 {

 int temp;

 temp = stockLevel - amount;

 if (temp < MIN)

 {

 System.out.print("Removing " + amount +

 " item will cause stock ");

 System.out.println("to become less than " + MIN + " units

 (understock)");

 }

 else

 {

 stockLevel = temp;

 }

 }

 public String showStockLevel ()

 { return("Inventory: " + stockLevel); }

}

James Tam

The Driver Class

public class Driver

{

 public static void main (String [] args)

 {

 Inventory chinook = new Inventory ();

 chinook.add (10);

 System.out.println(chinook.showStockLevel ());
 chinook.add (10);

 System.out.println(chinook.showStockLevel ());

 chinook.add (100);

 System.out.println(chinook.showStockLevel ());

 chinook.remove (21);

 System.out.println(chinook.showStockLevel ());

 // JT: The statement below won't work and for good reason!

 // chinook.stockLevel = -999;

 }

}

Introduction to Object-Oriented programming 34

James Tam

Add(): Try Adding 100 items to 20 items

 public void add(int amount)

 {

 int temp;

 temp = stockLevel + amount;

 if (temp > MAX)

 {

 System.out.println();

 System.out.print("Adding " + amount +

 " item will cause stock ");

 System.out.println("to become greater than " + MAX + "
units

 (overstock)");

 }

 else

 {

 stockLevel = temp;

 }

 } // End of method add

James Tam

Remove(): Try To Remove 21 Items From 20
Items

 public void remove(int amount)

 {

 int temp;

 temp = stockLevel - amount;

 if (temp < MIN)

 {

 System.out.print("Removing " + amount +

 " item will cause stock ");

 System.out.println("to become less than " + MIN + " units

 (understock)");

 }

 else

 {

 stockLevel = temp;

 }

 }

 public String showStockLevel ()

 { return("Inventory: " + stockLevel); }

}

Introduction to Object-Oriented programming 35

James Tam

Messaging Passing

•Invoking the methods of another class.

class Driver
{
 main ()
 {
 Game aGame = new Game();
 aGame.start();
 }
}

class Game
{
 Game()
 {
 :
 }
 start()
 {
 :
 }
}

James Tam

Association Relations Between Classes

•A relation between classes allows messages to be sent (objects
of one class can call the methods of another class).

Car Engine

+ignite ()

Engine anEngine = new Engine();
anEngine.ignite();

Introduction to Object-Oriented programming 36

James Tam

Associations Between Classes

•One type of association relationship is a ‘has-a’ relation (also
known as “aggregation”).
- E.g. 1, A car <has-a> engine.

- E.g. 2, A lecture <has-a> student.

•Typically this type of relationship exists between classes when
a class is an attribute of another class.

public class Car
{
 private Engine anEngine;

private [] Lights carLights;
public start()
{
 anEngine.ignite();
 carLights.turnOn();
}

}

public class Engine
{

public boolean ignite () {
.. }

}

public class Lights
{
 private boolean isOn;
 public void turnOn() {
 isOn = true;}
}

James Tam

Directed Associations

•Unidirectional
- The association only goes in one direction.

- You can only navigate from one class to the other (but not the other way
around).

- e.g., You can go from an instance of Car to Lights but not from Lights to
Car, or you can go from an instance of Car to Engine but not from Engine
to Car (previous slide).

Introduction to Object-Oriented programming 37

James Tam

Directed Associations (2)

•Bidirectional
- The association goes in both directions
- You can navigate from either class to the other
- e.g.,
 public class Student
 {
 private Lecture [] myRegistration = new Lecture [5];
 ...
 }

 public class Lecture
 {
 private Student [] classList = new Student [250];
 ...
 }

James Tam

UML Representation Of Associations

Car Light

Car

Student Lecture

Unidirectional associations

Bidirectional associations

Gasoline

Introduction to Object-Oriented programming 38

James Tam

Multiplicity

•It indicates the number of instances that participate in a
relationship

 Multiplicity Description

1 Exactly one instance

n Exactly “n” instances {n: a positive integer}

n..m Any number of instances in the inclusive range

from “n” to “m” {n, m: positive integers}

* Any number of instances possible

James Tam

Multiplicity In UML Class Diagrams

Class 1 Class 2

Number of

instances of

class 1 that

participate in

the relationship

Number of

instances of

class 2 that

participate in

the relationship

Introduction to Object-Oriented programming 39

James Tam

Why Represent A Program In Diagrammatic
Form (UML)?

•Images are better than text for showing structural relations.

•UML can show relationships between classes at a
glance

Text

Jane is Jim’s boss.

Jim is Joe’s boss.

Anne works for Jane.

Mark works for Jim

Anne is Mary’s boss.

Anne is Mike’s boss.

Structure diagram

Jane

Jim Anne

Joe Mark Mike Mary

James Tam

Relationships Between Classes

•Design rule of thumb.

•It can be convenient to create a relationship between classes
(allow methods to be invoked/messages to be passed).

•But unless it is necessary for a relationship to exist between
classes do not create one.

•That’s because each time a method can be invoked there is the
potential that the object whose method is called can be put
into an invalid state (similar to avoiding the use of global
variables to reduce logic errors).

Introduction to Object-Oriented programming 40

James Tam

After This Section You Should Now Know

•How to define classes, instantiate objects and access different
part of an object

•How to represent a class using class diagrams (attributes,
methods and access permissions) and the relationships
between classes

•What is encapsulation, how is it done and why is it important
to write programs that follow this principle

•What are accessor and mutator methods and how they can be
used in conjunction with encapsulation

•What is method overloading and why is this regarded as good
style

James Tam

After This Section You Should Now Know (2)

•Scoping rules for attributes, methods and locals

•What is a constructor and how is it used

•What is an association, how do directed and non-directed
associations differ, how to represent associations and
multiplicity in UML

•What is multiplicity and what are kinds of multiplicity
relationships exist

Introduction to Object-Oriented programming 41

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 81

