
VBA (Visual Basic For Applications)
Programming

Overview of concepts covered in this section:
• Finding and replacing things in a document
• Branching
• Looping
• Strings
• Linking MS-Office documents
• Printing documents

Collection

• An object that consists of other objects

• Example: The Documents collection will allow access to the
documents that have been opened.

• Access a collection rather than the individual objects may be
time-saving shortcut.
– Instead of manually closing all open documents this can be done in one

instruction:

Documents.close

Types Of Collections

• Some attributes of a document that return a collection.

• Lists: allows access to all lists in a document

• Shapes: allows access to all shapes in a document

• Tables: allows access to all tables in a document (detailed
example coming up but a few brief examples below).

– E.g., ActiveDocument.Tables – to access the tables in your
document

– ActiveDocument.Tables(1) – to access the first table in a
document.

• Windows: briefly introduced in the last section

The ActiveDocument Object

• Quick recap: although you may have many documents open,
the ‘active document’ is the document that you are currently
working with:

The active

document

Attributes Of The ActiveDocument Object

• Some of the basic attributes of ActiveDocument.
Application: the application/program associated with
the document (useful if a VBA macro is linking several
applications)

Name: the name of the current document (useful for determining the
active document if multiple documents are currently open).

Path: the save location of the active document.

FullName: the name and save location of the current document.

HasPassword: true/false that document is password protected

SpellingChecked: true/false that has been spell checked since
document was last edited

Note: Information for these attributes can be viewed by passing the
information as a parameter to a message box e.g., MsgBox
(ActiveDocument.Name)

Methods Of The ActiveDocument Object

• Some useful methods of ActiveDocument.
Checkspelling(): exactly as it sounds!

Close(): covered in the previous section

CountNumberedItems(): see image (this slide)

DeleteAllComments(): see image (this slide)

Printout(): prints current active document on the default printer

Save() : covered in the previous section

SaveAs2() : covered in the previous section

Select(): covered in the previous section

SendMail(): see image (next slide)

ActiveDocument.SendMail()

• Runs the default email program

• The active document automatically becomes an attachment

• Subject line = name of document

• (For anything more ‘fancy’ you should use VBA to create and
access an MS-Outlook object)

“Finding” Things In A Document

• It can be done in different ways

• Example (common) ‘Find’ is an object that is part of the
‘Selection’ object in a document.
– JT’s note: although it may appear to be confusing at first it doesn’t mean

that the find (or find and replace) requires text to be selected.

– Making ‘Find’ a part of ‘Selection’ was merely a design decision on
the part of Microsoft.

• Example (alternative is JT’s preferred approach) ‘Find’ is an
object that is part of the ‘Content’ object of the
‘ActiveDocument’

One source of information:

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

Single Replacement

• Word document containing the macro: simpleFind.docm
 sub simpleFind()

 ActiveDocument.Content.Find.Execute FindText:="tamj",ReplaceWith:="tam"

end Sub

 'The instruction can be broken into two lines without causing

 'An error by using an underscore as a connector

 ActiveDocument.Content.Find.Execute FindText:="tamj", _

 ReplaceWith:="tam"

Background for example:
• My old email address (still works):

tamj@cpsc.ucalgary.ca
• My new email address:

tam@ucalgary.ca
• Incorrect variant:

tamj@ucalgary.ca

mailto:tamj@cpsc.ucalgary.ca
mailto:tam@ucalgary.ca

More Complex Find And Replace

• Word document containing the macro:
findReplaceAllCaseSensitive.docm

Sub findReplaceAllCaseSensitive()

 ActiveDocument.Content.Find.Execute FindText:="tamj", _

 ReplaceWith:="tam", Replace:=wdReplaceAll, _

 MatchCase:=True

End Sub

Before After

With, End With

• For ‘deep’ commands that require many levels of ‘dots’, the ‘With’, ‘End
With’ can be a useful abbreviation.

• Example

With ActiveDocument.Content.Find

 .Text = "tamj"

Equivalent to (if between the ‘with’ and the ‘end with’:

 ActiveDocument.Content.Find.Text = "tamj"

• Previous example, the ‘Find’ employing ‘With’, ‘End With’:

• Also the search and replacement text are specified separately to shorten
the ‘execute’ (the “ActiveDocument.Content.Find” listed
once)

With ActiveDocument.Content.Find

 .Text = "tamj"

 .Replacement.Text = "tam"

 .Execute MatchCase:=True, Replace:=wdReplaceAll

End With

‘Find text’ and

‘replacement text’

moved here to

simplify the

‘.execute’

 ActiveDocument.Content.Find.Execute

Find And Replace

• It’s not just limited to looking up text.

• Font effects e.g., bold, italic etc. can also be ‘found’ and
changed.

Finding And Replacing Bold Font

• Word document containing the macro: findBold.docm
Sub findBold()

 With ActiveDocument.Content.Find

 .Font.Bold = True

 With .Replacement

 .Font.Bold = False

 End With

 .Execute Replace:=wdReplaceAll

 End With

End Sub

'Removes bold facing effect on all text

Finding/Replacing Formatting Styles

• You may already have a set of pre-created formatting styles
defined in MS-Word.

• You can redefine the characteristic of a style if you wish.

• Assume for this example that you wish to retain all existing
styles and not change their characteristics.

• But you want to replace all instances of one style with another
style e.g., all text that is ‘normal’ is to become ‘TamFont’

• ‘Find’ can be used to search (and replace) instances of a
formatting style.

Finding/Replacing Formatting Styles (2)

• Word document containing the macro: findReplaceStyle.docm
Sub findReplaceStyle()

 With ActiveDocument.Content.Find

 .Style = "Normal"

 With .Replacement

 .Style = "TamFont"

 End With

 .Execute Replace:=wdReplaceAll

 End With

End Sub

BEFORE AFTER

‘Normal’

style

becomes

‘TamFont’

Recap: Programs You’ve Seen So Far

• How to write a program with a sequence of VBA instructions
– Each instruction executes from beginning to end, one after the other

• When the last instruction is reached then the program ends

Start

End

What You Will Learn: Branching/Decisions

• What if alternatives may occur during execution (a branch in
execution)
– Each alternative may result in a different series of instructions being

executed

Ask for income

>= $0?

Show error
message

No

Calculate and
display tax

Yes

How To Make Decisions In A Program

• Check if some condition has been met (e.g., password for the
document correctly entered)

• Program may react one way if it’s true that the condition has
been met (e.g., password matches: display confirmation
message)

• Program may also react another way if it’s false that the
condition has been met (e.g., password doesn’t match:
display error message)

Branching/Decision Making Mechanisms

• If-Then

• If-Then, Else Similar to Excel if-then

• If-Then, ElseIf, Else Similar to Excel nested if’s

New Terminology

• Boolean expression: An expression that must work out
(evaluate to) to either a true or false value.
– e.g., it is over 45 Celsius today

– e.g., the user correctly entered the password

• Body: A block of program instructions that will execute under
a specified condition.

– Style requirement

• The ‘body’ is indented

Private Sub Document_Open()
 MsgBox ("Fake virus!")
End Sub

This/these instruction/instructions

run when you tell VBA to run the

macro, the ‘body’ of the macro

program

Decision Making With ‘If-Then’

Boolean
Then execute an

instruction or instructions

True

False

Remainder of

the program

If-Then

• Format:
If (Boolean expression) Then

 If-Body

End if

• Example:
 If (totalWords < MIN_SIZE) Then

 MsgBox ("Document too short, total words " &

 totalWords)

 End If

If-Then: Complete Example

• Word document containing the macro: wordCount.docm
' Try deleting all the words in the Word doc and run the

' macro again

Sub wordCount()

 Dim totalWords As Integer

 MIN_SIZE = 1000

 totalWords = ActiveDocument.Words.Count

 If (totalWords < MIN_SIZE) Then

 MsgBox ("Document too short, total words " &

 totalWords)

 End If

End Sub

Allowable Operators For Boolean Expressions

if (value operator value) then

VBA Mathematical

operator equivalent Meaning Example

< < Less than 5 < 3

> > Greater than 5 > 3

= = Equal to 5 = 3

<= ≤ Less than or equal to 5 <= 5

>= ≥ Greater than or equal to 5 >= 4

<> ≠ Not equal to x <> 5

Different Actions Required For The True Vs. False
Cases

• While it is possible to explicitly state both cases using two if-
then expressions…
 If (totalWords < MIN_SIZE) Then

 MsgBox ("Document too short, total words " &

 totalWords)

 End If

 If (totalWords >= MIN_SIZE) Then

 MsgBox ("Document meets min. length requirements")

 End If

• The previous approach can be simplified

• Why? (What characteristics of the two if-then expressions may
allow for an easy simplification)?

It’s true that the
document is too short

It’s false that the
document is too short

Decision Making With An ‘If, Else’

Boolean Execute an instruction

or instructions (if-body)

True

False

Execute an instruction

or instructions (else-body)

Remainder of

the program

If-Then (True), Else (False)

• Format:
If (Boolean expression) Then

 If-Body

Else

 Else-Body

End if

• Example:
 If (totalWords < MIN_SIZE) Then

 MsgBox ("Document too short, total words " & totalWords)

 Else

 MsgBox ("Document meets min. length requirements")

 End If

If-Then, Else: Complete Example

• Word document containing the macro: wordCount2.docm
Sub wordCount2()

 Dim totalWords As Integer

 MIN_SIZE = 1000

 totalWords = ActiveDocument.Words.Count

 If (totalWords < MIN_SIZE) Then

 MsgBox ("Document too short, total words " &

 totalWords)

 Else

 MsgBox ("Document meets min. length requirements")

 End If

End Sub

' Try deleting words or changing the minimum size and observe
' the effect on the program.

What To Do When Multiple Conditions Must Be
Checked

• Case 1: If each condition is independent of other questions
– Multiple if-then expressions can be used

– Example:

– Q1: Are you an adult?

– Q2: Are you a Canadian citizen?

– Q3: Are you currently employed?

What To Do When Multiple Conditions Must Be
Checked (2)

• Case 2: If the result of one condition affects other conditions
(when one condition is true then the other conditions must be
false)
–If-then, elseif, else can be used

– Which of the following is your place of birth? (Answering true to one
option makes the options false)

a) Calgary

b) Edmonton

c) Lethbridge

d) Red Deer

e) None of the above

Decision Making With Multiple If-Then’s

Boolean 1

True

Instruction or

instructions

True

Instruction or

instructions

Boolean 2

Remainder of

the program

False

False

Q1: Are you an adult?

Q2: Are you a Canadian citizen?

Q3: Are you currently employed?

Multiple If-Then's

• Any, all or none of the conditions may be true

• Employ when a series of independent questions will be asked

• Format:
 if (Boolean expression 1) then

 body 1

 end if

 if (Boolean expression 2) then

 body 2

 end if

 ...

 statements after the conditions

Multiple If-Then's (2)

• Word document containing the macro: multipleIf.docm
Sub multipleIf()

 ' Check if there were any 'comments' added to the document.

 If (ActiveDocument.Comments.Count > 0) Then

 MsgBox ("Annotations were made in this document")

 End If

 ' A numbered item includes numbered and bulleted lists.

 If (ActiveDocument.CountNumberedItems() > 0) Then

 MsgBox ("Bullet points or numbered lists used")

 End If

End Sub

Multiple If's: Mutually Exclusive Conditions

• At most only one of many conditions can be true
• Can be implemented through multiple if's

• Word document containing the macro (empty document, see macro
editor for the important details): “gradesInefficient.docm”

Inefficient

combination!

If (grade = 4) Then

 letter = "A"

End If

If (grade = 3) Then

 letter = "B"

End If

If (grade = 2) Then

 letter = "C"

End If

If (grade = 1) Then

 letter = "D"

End If

If (grade = 0) Then

 letter = "F"

End If

Decision Making With If-Then, Elseif, Else

Boolean
True Instruction or

instructions

False

Boolean

Remainder of

the program

Instruction or

instructions

False

True Instruction or

instructions

JT’s note: once the first ‘true’ case is
encountered all remaining and
related Boolean expressions (using
‘Elseif’) are skipped

Multiple If-Elif-Else: Use With Mutually
Exclusive Conditions

• Format:
 if (Boolean expression 1) then:

 body 1

 elseif (Boolean expression 2):

 body 2

 ...

 else

 body n

 ' Only one ‘end-if’ at very end

 end if

 statements after the conditions

Mutually exclusive
• One condition evaluating

to true excludes other

conditions from being true

• Example: having your

current location as

‘Calgary’ excludes the

possibility of the current

location as ‘Edmonton’,

‘Toronto’, ‘Medicine Hat’

If-Elseif-Else: Mutually Exclusive Conditions
(Example)

• Word document containing the macro (empty document, see macro
editor for the important details): “gradesEfficient.py”
 If (grade = 4) Then

 letter = "A"

 ElseIf (grade = 3) Then

 letter = "B"

 ElseIf (grade = 2) Then

 letter = "C"

 ElseIf (grade = 1) Then

 letter = "D"

 ElseIf (grade = 0) Then

 letter = "F"

 Else

 letter = "Invalid"

 End If

This approach is more

efficient when at most

only one condition can

be true.

Extra benefit:

The body of the else

executes only when all the

Boolean expressions are

false. (Useful for error

checking/handling).

Location Of The “End If”: Multiple If’s

• Independent If-then’s:
– Since each ‘if’ is independent each body must be followed by it’s own

separate ‘end if’

Location Of The “End If”: If-then, Else

• If-then, Else:
– Since the ‘if-then’ and the ‘else’ are dependent (either one body or

the other must execute) the ‘end if’ must follow the body of the ‘else-
body’ (last dependent “if-branch”)

Document

either does or

does not have

enough words

Location Of The “End If”: If-Then, ElseIf

• Dependent If-then, Else-If:
– Since the results of earlier Boolean expressions determine whether later

ones can be true (reminder: because at most only one can be true) all of
the if-then and Elseif expressions are dependent (one related
block).

– The “end if” belongs at the very end of the block

Logic Can Be Used In Conjunction With
Branching

• Typically the logical operators And, Or are used with multiple
conditions/Boolean expressions:
– If multiple conditions must all be met before the body will execute. (And)

– If at least one condition must be met before the body will execute. (Or)

• The logical Not operator can be used to check if something has
‘not’ occurred yet

– E.g., If it’s true that the user did not enter an invalid value then the program can proceed.

Logic: The “Or” Operator

• Format:
 If (Boolean expression) Or (Boolean expression) then

 body

 End if

• Word document containing the macro (empty document, see
macro editor for the important details): “if_or_hiring.docm”
 gpa = InputBox("Grade point: ")

 experience = InputBox("Years of job experience: ")

 If (gpa > 3.7) Or (experience > 5) Then

 result = "Hire applicant"

 Else

 result = "Insufficient qualifications"

Hiring Example: Example Inputs & Results

GPA Years job experience Result

2 0 Insufficient qualifications

1 10 Hire

4 1 Hire

4 7 Hire

 If (gpa > 3.7) Or (experience > 5) then

Logic: The “AND” Operator

• Format:
 If (Boolean expression) And (Boolean expression) then

 body

 End if

• Word document containing the macro (empty document, see
macro editor for the important details): if_and_firing.py

 salary = InputBox("Salary: ")

 years = InputBox("Years of employment: ")

 If (salary >= 100000) And (years < 2) Then

 result = "Fired!"

 Else

 result = "Retained"

Firing Example: Example Inputs & Results

Salary Years on job Result

1 100 Retained

50000 1 Retained

123456 20 Retained

1000000 0 Fired!

 If (salary >= 100000) And (years < 2) Then

Logic: The “Not” Operator

• Format:
If Not (Boolean Expression) then

 body

End if

• Word document containing the macro example:
checkSave.docm

 If Not (ActiveDocument.Saved) Then

 MsgBox ("You haven't saved " & ActiveDocument.Name

 & " yet")

 End If

Line Continuation Character

• To increase readability long statements can be split over
multiple lines.
If (income > 99999) And _

 (experience <= 2) And _

 (numRepramands > 0) Then

 MsgBox ("You’re fired!")

End If

• To split the line the line continuation character (underscore)
must be preceded by a space.

• Keywords cannot be split between lines

• Strings require the concatenation operator ‘&’

For more details see: http://support.microsoft.com/kb/141513

Line Continuation Character (2)

• Strings split over multiple lines require a combination of the
proper use of the line continuation character '_' and the
concatenation operator '&‘:
 MsgBox ("Your " _

 & "name")

• Decision making is dependent.
– One branch is ‘nested’ inside of another branch

• The first decision must evaluate to true (“gate keeper”) before
successive decisions are even considered for evaluation.

Nested Decision Making

Question 1?
True

Question 2?
True Statement or

statements

Remainder of

the program

False
False

• One decision is made inside another.

• Outer decisions must evaluate to true before inner decisions
are even considered for evaluation.

• Format:
 if (Boolean expression) then

 if (Boolean expression) then

 body

 end if

 end if

Outer body

Nested Decision Making

Inner body

Example: Nested Branches

• Word document containing the macro (empty document, see
macro editor for the important details): “nested.docm”
Sub nested()

 Const TAX_RATE = 0.5

 Dim citizen As String

 Dim taxCredit As Long

Example: Nested Branches (2)

 income = InputBox("Annual income: ")

 If (income < 10000) Then

 citizen = InputBox("Enter 'y' if citizen: ")

 If (citizen = "y") Then

 MsgBox ("This person can receive social

 assistance")

 taxCredit = 100

 End If

 End If

 tax = (income * TAX_RATE) - taxCredit

 MsgBox ("Income $" & income & ", Tax credit " & taxCredit
& ", Tax paid " & tax)

End Sub

The Selection Object again

• With a previous example if no text was selected then the
program would produce no visible effect.
Sub SelectedFontChange()

 Selection.Font.Bold = wdToggle

End

• Another example automatically selected text for you
“expanded” the selection.
Sub AutoSelectedFontChange()

 Selection.Expand

 Selection.Font.Bold = wdToggle

End Sub

Before After

Constants For The Selection Object

Name of constant Meaning of constant

wdSelectionIP No text selected

wdSelectionNormal Text (e.g., word, sentence) has
been selected

wdSelectionShape A graphical shape (e.g., circle,
text book) has been selected

The Selection Object again

• Application of branching: check if a selection has been made
and only apply the selection if that is the case.

• Word document containing the macro:
“selectionExample.docm”
Sub checkSelection()

 If Selection.Type = wdSelectionIP Then

 MsgBox ("No text selected, nothing to change")

 Else

 Selection.Font.Bold = wdToggle 'wdToggle, constant

 End If

End Sub

Default title bar

Run macro: No selection Run macro:

selected text

bolded

Marking/Spelling Checking A Document

• Suppose you want to mark a document with a pass/fail grade
based on the number of typographical errors (e.g., more than
30 is a fail, anything less is a pass).

• Assume that document names match student names

• For document to be marked you will create another document
in the same folder.

• To make it easier to pair up marking with the student the
‘marking document’ will be named “Marking for: <document
name>”
– E.g., “james tam.doc” would produce a marking document called

“Marking for: James Tam.doc”

– Inside the marking document will be the text “Marking for:
<document name> <pass or fail>”

“Marking_Program”

Word document containing the macro:
markingProgram.docm

Sub MarkingForSpelling()

 Dim totalTypos As Integer

 Const MAX_TYPOS = 30

 Dim currentDocument As String

 Dim markingDocument As String

 Dim fileLocation As String

 Dim feedback As String

“Marking_Program” (2)

 'Get Name of current document

 currentDocument = ActiveDocument.Name

 'Name of marking document based on current doc

 markingDocument = "MARKS FOR " & currentDocument

 fileLocation = ActiveDocument.Path

 totalTypos = ActiveDocument.SpellingErrors.count

 'Feedback is prefaced by student(document) name

 feedback = currentDocument

“Marking_Program” (3)

 'Creates a new word document based on the 'normal' template

 'Create a variable ‘wordDocument’ to refer to the newly created

 'document

 Set wordDocument = Documents.Add("Normal.dot")

“Marking_Program” (4)

 'Recall: before this feedback just = document name

 If (totalTypos > MAX_TYPOS) Then

 feedback = feedback & ": Too many typographical

 errors: Fail"

 Selection.TypeText (feedback)

 Else

 feedback = feedback & ": Pass"

 Selection.TypeText (feedback)

 End If

 ‘Saving feedback doc in same location but under name of

 ‘marking (and not the student) document

 wordDocument.SaveAs2 (fileLocation & "\" &

 markingDocument)

End Sub

Example Run Of Marking Program

• Suppose that this macro was part of a word document
“marking program.docm”

• Running the macro would then produce a file called “MARKS
FOR marking program.docm”
– (Assuming that the program had no spelling errors) this file would

contain the following text:

 Marking program.docm: Pass

Securing A Document: Using MS-Word

• Documents can be configured so a password is required to
view the contents.

Securing A Document: Simple VBA Example

• Word document containing the macro:
passwordBranchExample.docm
Sub passWordExample()

 Dim yourPassword As String

 Dim warningCaps As String

 If (Application.CapsLock = True) Then

 warningCaps = "Caution: Caps Lock is On!"

 Else

 warningCaps = ""

 End If

 yourPassword = InputBox("Password for document: ",

 warningCaps)

 ActiveDocument.Password = yourPassword

End Sub

What You Will Learn: Repetition/Loops

• How to get the program or portions of the program to re-run
itself
– Without duplicating the instructions

– Example: you need to calculate tax for multiple people

Ask for income

Calculate deductions

Display amounts

Loop: allows

you to repeat

the same tasks

over and over

again

Types Of Loops

• Fixed repetition loops: runs some integer ‘n’ times e.g.,
generates taxes for 10 clients
–For-next

• Variable repetition loops: runs as long as some condition holds
true e.g., while the user doesn’t quit the program re-run the
program, while the user enters an erroneous value ask the user
for input.
–Do-while loop

For-Next Loops

• A ‘counting’ loop: counts out a sequence of numbers

• Format:
For <counter> = <start> To <end> Step <step size>1

 <Statement(s)>

Next <counter>

• Example: “for1.docm”
 Dim i As Integer

 For i = 1 To 4 Step 1

 MsgBox ("i=" & i)

 Next i

1 Step size can be a positive or negative integer e.g., 1, -1, 5, -10 etc.

For-Next Loops (2)

• For-next loops can count down as well as up

• The Steps can be values other than one.

• Example: “for2.docm”
 Dim i As Integer

 For i = 12 To 0 Step -3

 MsgBox ("i=" & i)

 Next i

12
9
6
3
0

Do-While Loop

• Format:
Do While <Condition>

 <Statement(s)>

Loop

• Example: “while1.docm”
 Dim i As Integer

 i = 1

 Do While i <= 4

 MsgBox ("i=" & i)

 i = i + 1

 Loop
Any valid

mathematical

expression

here

Start

Statements

Loop

End

Condition
?

T

F

Simple Example: Sorting Three Tables

• Instructions needed for sorting 3 tables

ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

Before After

Previous Example

• Critique of the previous approach: the program ‘worked’ for
the one document but:
– What if there were more tables (cut and paste of the sort instruction is

wasteful)?

– What if the number of tables can change (i.e., user edits the document)

• Notice: The process of sorting just repeats the same action but
on a different table.
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

• Sorting can be applied reduce the duplicated statements

Revised Example: Sorting Tables With A Loop

Word document containing the macro:
“sortingTables.docm”
Sub Sort()

 Dim CurrentTable As Integer

 Dim NumTables As Integer

 NumTables = ActiveDocument.Tables.Count

 If NumTables = 0 Then

 MsgBox ("No tables to sort")

 Else

 For CurrentTable = 1 To NumTables Step 1

 MsgBox ("Sorting Table # " & CurrentTable)

 ActiveDocument.Tables(CurrentTable).Sort

 Next

 End If

End Sub

Result: Sorting Tables

• Before

• After

More On Sort

• A handy parameter that can be used to configure how it runs.

• Format
Sort (<Boolean to Exclude header – True or False>)

• Example
–ActiveDocument.Tables(CurrentTable).Sort(True)

– Before

– After

Second Sorting Example: Exclude Headers

• Document containing the macro:
“sortingTablesExcludeHeader.docm”
Sub Sort()

 Dim CurrentTable As Integer

 Dim NumTables As Integer

 NumTables = ActiveDocument.Tables.Count

 If NumTables = 0 Then

 ' Don't bother sorting

 MsgBox ("No tables to sort")

 Else

 For CurrentTable = 1 To NumTables Step 1

 MsgBox ("Sorting Table # " & CurrentTable)

 ActiveDocument.Tables(CurrentTable).Sort (True)

 Next

 End If

End Sub

Before

After

The Need For String Operations

• Sometimes you only want a part of a string (“substring”)

• Example a string containing location information
– Address = “ABCalgary”

• If there is a standard format in the data e.g., the first two
characters will always be the province then you can apply a
string operation to remove the desired sub-string from the
original string
– “AB”

–Left(address,2) <= start counting from the left extract the first two

 characters

More On Strings

• A string consists of a series of characters.

• Each character in a string has a position (referred to as an
‘index’).
– The first character is at position zero

• Examples
– “Hello”

– “u r”

0 1 2 3 4

‘H’ ‘e’ ‘l’ ‘l’ ‘o’

0 1 2

‘u’ <SPACE> ‘r’

Some Useful String Operators
• Assume we have the following strings created for the examples

Dim str1 as String

Dim str2 as String

Dim num as Integer

str1 = "hello world“

str2 = "hello"

Desired operation Function Example usage Result

Retrieve the first ‘n’
characters (count
from left)

Left(<string>, n) str2 = left(str1,5)

Str2 contains the
string “hello”

Retrieve the last ‘n’
characters (count
from right)

Right(<string>,n) Str2 =
right(str1,4)

Str2 contains the
string “orld”

Determine a string
length

Len(<string>) num = Len(str1) Num is 11

Comparing strings StrComp(<string1>,
<string2>)

Num =
strComp(str1,str2)

Num is zero if
identical, non-zero
if different

String Compare Example

• Word document containing the macro (empty document, see
macro editor for the important details):
stringCompare.docm
Sub stringCompare ()

 Dim str1 As String

 Dim str2 As String

 Dim num As Integer

 str1 = InputBox("enter a string")

 str2 = InputBox("enter a string")

 num = StrComp(str1, str2)

 MsgBox (num)

End Sub

Str1= “ab”
Str2 = “ab”
Num = 0

Str1= “ab”
Str2 = “ba”
Num = -1

Str1= “ab”
Str2 = “aa”
Num = 1

JT: “Why are we learning this stuff (string compare function)???”

Linking Office Documents

• One document contains a link to another document (typically
this is done with two different type of MS-Office applications
to take advantages of the strengths of each application).

• Pro
– There are two separate documents (saves on file size, changes in the

original document automatically show in document containing the link)

• Con:
– It’s location specific (moving documents or sharing documents results in

‘breaking’ the link)

For more information: http://support.microsoft.com/kb/76993

How To Link Documents (Word Linked To Excel)

• Suppose you have an extensive amount of financial information entered
and calculated in a spreadsheet

• The information is imported via ‘linking’ into a Word document so it can be
formatted

TAMCO

Gross income Costs Net income Net:Gross Income

100 75 25 25.00%

HAL

Gross income Costs Net income Net:Gross Income

1500 1250 250 16.67%

Pear computer

Gross income Costs Net income Net:Gross Income

9999 999 9000 90.01%

Alternate Approach For Linking Documents

• Insert->Object

• Create from file->Link to file->Browse

Embedding Office Documents

• Copy all of the information from one document to another
document (e.g., embed a copy of an Excel spreadsheet inside
of Word document).

• The capabilities of another application such as Excel can be
used inside of Word (formulas, updated calculations etc.)

• Pro
– The document with another document embedded is complete. That file

can copied, shared etc.

• Con:
– The embedded document is copied and if the file is large a great deal of

space can be duplicated

– If the original document is changed (spreadsheet updated), the changes
are not reflected in the document that contains the embedded
document (word document containing the spreadsheet)

For more information: http://support.microsoft.com/kb/76993

How To Embed One Document In Another

• Insert->Object

• Create from file->Browse

Example: Using Branches, Loops, Strings

• Suppose that this data is not only extensive (many tables), it is
also dynamic (changes over time).

• You need to analyze the data and highlight the important
information
– Which companies may be a good investment?

– Which criteria make it a good investment?

– With a real example many companies are listed on the stock exchange

– For each company there can be a great deal of background information

• “Minimum” current stock price, dollar value of change

• Other information could include detailed financial statements (e.g., how much
money is that company making, what’s the ratio of debt vs. cash etc.)

Example: Using Branches, Loops, Strings (2)

• (Note: the problem of having to sort through large sets of data
is not unique to finance and investing)
– E.g., Suppose you want to work at companies that are hiring based on

certain qualifications (“MS-Word VBA programming”) or provide certain
benefits (“Unlimited vacation time”)

Example: Background Knowledge

• Gross income: total income earned (total sales dollars)

• Costs: expenses of running the business
– Cost to purchase items sold

– Salaries

– Rent

– Utilities

– Taxes etc.

• Net income: Gross income minus costs

• Ratio of net to gross income
– Ratio = (Net income) / (Gross income) * 100

Example Requirements

• Highlight companies with a net income that is $250 or greater
(red)

• Highlight companies whose ratio of net to gross income is 25%
or greater (blue)

• If a company meets both requirements draw extra attention
(bold, larger font, extra comments - “BUY THIS!!!”

Example File: Before

Example File: After

Highlighting Important Table Data: VBA Solution

• Word document containing the macro:
“tableHighLight.docm”
Sub tableHighlight()

 Const MIN_INCOME = 250

 Const MIN_RATIO = 25

 Const MATCH = 0

 Dim CurrentTable As Integer

 Dim NumTables As Integer

 Dim NetString As String

 Dim NetNumber As Integer

 Dim RatioString As String

 Dim RatioNumber As Integer

 Dim CompanyName As String

 Dim TempString As String

 Dim StringLength As Integer

 Dim i As Integer

Highlighting Important Table Data: VBA Solution
(2)

 ' No tables to analyze, end the program

 NumTables = ActiveDocument.Tables.Count

 If NumTables = 0 Then

 ActiveDocument.ActiveWindow.Caption = "Error: No _

 tables in document!"

 Exit Sub

 End if

Highlighting Important Table Data: VBA Solution
(2)

For CurrentTable = 1 To NumTables Step 1

 NetString =

 ActiveDocument.Tables(CurrentTable). _

 Rows(3).Cells(3).Range.Text

 StringLength = Len(NetString)

 ' column labels 0 1 2 3

 ' data in each column 1 2 ? ?

 ' left("12??", (4-1 = 2)) so yields "12"

 TempString = Left(NetString, (StringLength - 1))

Highlighting Important Table Data: VBA Solution
(3), Net Income

 If IsNumeric(TempString) Then

 NetNumber = CLng(TempString)

 Else

 MsgBox ("Error non-numeric net income information")

 NetNumber = 0

 End If

 If (NetNumber >= MIN_INCOME) Then

 ActiveDocument.Tables(CurrentTable). _

 Rows(3).Cells(3).Range.Select

 With Selection

 .Font.Bold = True

 .Font.Color = wdColorRed

 End With

 End If

 Const MIN_INCOME = 250

Highlighting Important Table Data: VBA Solution
(4), Ratio (Net:Gross)

RatioString = ActiveDocument.Tables(CurrentTable). -

 Rows(3).Cells(4).Range.Text

StringLength = Len(RatioString)

TempString = Left(RatioString, (StringLength - 3))

If IsNumeric(TempString) Then

 RatioNumber = CLng(TempString)

Else

 MsgBox ("Error non-numeric information in ratio of net _

 income:gross")

RatioNumber = 0

End If

Highlighting Important Table Data: VBA Solution
(5), Ratio

If (RatioNumber >= MIN_RATIO) Then

 ActiveDocument.Tables(CurrentTable). _

 Rows(3).Cells(4).Range.Select

 With Selection

 .Font.Bold = True

 .Font.Color = wdColorBlue

 End With

 End If

 Const MIN_RATIO = 25

Highlighting Important Table Data: VBA Solution
(6)

If (RatioNumber >= MIN_RATIO) And (NetNumber >= MIN_INCOME) _
Then

 CompanyName =

 ActiveDocument.Tables(CurrentTable). _

 Rows(1).Cells(1).Range.Text _

 CompanyName = CompanyName & "<== BUY THIS!!!“

 ActiveDocument.Tables(CurrentTable). _

 Rows(1).Cells(1).Range.Text = CompanyName

 ActiveDocument.Tables(CurrentTable). _

 Rows(1).Cells(1).Range.Select

 With Selection

 .Font.Size = 20

 .Font.Bold = True

 End With

 End If

Next ' Examine the next table

Printing: Single

• Printing a single document (currently opened, active MS-Word
document)

• Word document containing the macro example:
“singleDocumentPrint.docm”
Sub PrintSingleDocument()

 ActiveDocument.PrintOut

End Subs

Printing: Multiple

• Printing all the documents currently open in MS-Word.
– Take care that you don’t run this macro if you have many documents

open and/or they are very large!

– Word document containing the macro example:
“multiDocumentPrint.docm”

Sub PrintDocumentsCollection()

 Dim numDocuments As Integer

 Dim count As Integer

 numDocuments = Documents.count

 count = 1

 Do While (count <= numDocuments)

 Documents.Item(count).PrintOut

 count = count + 1

 Loop

End Sub

Learning: another
practical application
of looping e.g.,
automatically open
multiple documents,
make changes, print
and save them
without user action
needed

The ‘Dir’ Function

• A directory = Folder

• The Dir function allows access to the files in a directory

• Examples:
– Check if a file exists in a particular location

– Loop through all the files in a directory and process each file

Example: Using Dir To Check If File Exists (2)

• Word document containing the macro example:
openExistingDocument.docm
Sub openExistingDocument()

 Dim filename As String

 Dim checkIfExists As String

 Dim last As Integer

 filename = InputBox ("Enter the path and name of file to

 open e.g., 'C:\temp\tam.docx'")

 ' Error case: nothing to open, user entered no info

 If (filename = "") Then

 ActiveDocument.ActiveWindow.Caption =

 "Path/filename cannot be empty"

Example: Using Dir To Check If File Exists (2)

 ' No error: non-empty info entered

 Else

 checkIfExists = Dir(filename)

 If (Len(checkIfExists) = 0) Then

 MsgBox ("File doesn't exist can't open")

 Else

 MsgBox ("File exists opening")

 Documents.Open (filename)

 End If

 End If

End Sub

Example: Using Dir To Access Each File In A
Directory

• Word document containing the macro example:
loopDirectory.docm
Sub DirectoryLoop()

 Dim directoryPath As String

 Dim currentFile As String

 directoryPath = InputBox

 ("Enter full path of search folder")

 currentFile = Dir(directoryPath & "*.*")

 Do While currentFile <> ""

 MsgBox (currentFile)

 currentFile = Dir

 Loop

End Sub

Revision Of An Earlier Example

• The original version created a single document and creating an
accompanying marking document.

• This new version will automatically mark all the documents in a
user-specified folder and insert the marking information at the
bottom of each document.

• Details:
– Open each document in the folder

– Run a spell check of the document

– Based on the number of spelling mistakes the document will be marked
as either a pass or fail

– The comments will be inserted at the end of the document

– The marked document is then automatically closed and the program
moves onto the next document until there are no more documents in
that folder.

Revised Marking Program

• Word document containing the macro:
“markAllFolderDocuments.docm”

Sub markAllFolderDocuments()

 Const MAX_TYPOS = 3

 Const LARGER_FONT = 14

 Dim directoryPath As String

 Dim currentFile As String

 Dim totalTypos As Integer

 Dim feedback As String

Revised Marking Program (2)

 directoryPath = InputBox("Location and name of folder

 containing assignments (e.g., C:\grades\")

 If (Len(directoryPath) = 0) Then

 MsgBox ("No path specified, looking in default

 location C:\temp\")

 directoryPath = "C:\temp\"

 End If

Revised Marking Program (3)

 currentFile = Dir(directoryPath & "*.doc*")

 Do While currentFile <> ""

 feedback = vbCr 'Comments on a separate line

 feedback = feedback & currentFile

 currentFile = directoryPath & currentFile

 Documents.Open (currentFile)

 totalTypos = ActiveDocument.SpellingErrors.Count

 'Marking is based solely on typos

 If (totalTypos > MAX_TYPOS) Then

 feedback = feedback & ": Too many typographical

 errors: Fail (# typos=" & totalTypos & ")"

 Else

 feedback = feedback & ": Pass (# typos=" &

 totalTypos & ")"

 End If

<Enter>

Feedback

<Enter>
FileExample

Feedback

FileExample.docm

currentFile

<Enter>
FileExample
Pass (# typos=1)

Feedback

Revised Marking Program (4)

 'Comments appear at end of document

 Selection.EndOf Unit:=wdStory

 Selection.Text = feedback

 'Visually highlight the feedback text

 Selection.Font.Bold = True

 Selection.Font.Size = LARGER_FONT

 ActiveDocument.Close (wdSaveChanges)

 currentFile = Dir 'Access next document

 Loop 'Each loop: open and mark a document each

End Sub

After This Section You Should Now Know

• Collections
– What are they

– What is the advantage in using them

– Common examples found in Word documents

• The Active document
– What are some of the commonly accessed attributes

– What are some useful methods

• Finding things using macros
– How to find and replace: text, font effects or font styles

• Using the end-with

After This Section You Should Now Know (2)

• How to use branches to make decisions in VBA

–If

–If-else

–Multiple If’s

–If, else-if, else

– Nested branches

– Using logic (AND, OR, NOT) in branches

• How to use the line continuation character to break up long
instructions

• How to get a program to repeat one or more instructions using
loops

–For-next

–Do-while

After This Section You Should Now Know (3)

• Strings
– What is a string

– How to access the individual elements of a string

– How common and useful string functions work

• The advantages of linking vs. embedding MS-Office documents

• How to print documents from VBA programs

• How to use the ‘Dir’ function to access a folder/directory

