
4/10/2014

Design patterns 1

Introduction To Design
Patterns

You will learn about design
techniques that have been

successfully applied to different
scenarios.

James Tam

What Is A Design Pattern?

• A general and reusable solution to a commonly occurring
problem in the design of software.

• IT IS NOT a finished algorithm that can be directly translated
into program code.

• IT IS a template for how to solve a problem that has been used
in many different situations.

• The various Object-Oriented design patterns show interactions
between classes and objects without the specific the program
code that implements the pattern.
– e.g., Information hiding, inheritance etc.

4/10/2014

Design patterns 2

James Tam

Origin Of Design Patterns

• The foundation for design patterns come from the original
patterns specified in the book “Design Patterns: Elements of

Reusable Object-Oriented Software”

• Authors: “The gang of four” (Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides).

• Although examples of the patterns were provided in C++ and
SmallTalk the patterns can be applied to any Object-Oriented
language.

James Tam

The Model-View-Controller Pattern1

• Sometimes the same data may have to be accessed under
different contexts e.g., powerful desktop, web, mobile device.

• Each context may require a different interface (e.g., web page
on a mobile device, software on a computer).

• Even within an interface there may be a desire to see different
views of the data e.g., financial analysts may want to see
details (spreadsheet and/or financial statement) whereas the
shareholders or management may focus on overview views
(graphs)

1 Some additional sources that describe the model-view controller pattern:

I. Sun Microsystems: http://java.sun.com/blueprints/patterns/MVC-detailed.html

II. Microsoft: http://msdn.microsoft.com/en-us/library/ms978748.aspx

4/10/2014

Design patterns 3

James Tam

The Model-View-Controller Pattern1

• With this pattern the logic required to maintain the data is
separated (database, text file) from how the data is viewed
(graph, numerical) vs. how the data can be interacted with
(GUI, command line).

Model

•State

(data)

View

•Display of
data

• Interface

Controller

• Event handling

State change

State query

Change

notification

User interaction

View selection

James Tam

Model-View Controller Pattern (2)

• With many client applications the view and the controller may
be viewed as one entity.

• With web-based applications the view and the controller may
be very well defined:
– View: client browser program

– Controller: the server side applications that handle the web requests

4/10/2014

Design patterns 4

James Tam

Model-View-Controller Pattern (3)

• Implementing different parts that are decoupled (minimized
dependencies) provides many benefits:
– One part may be changed independent of the other parts e.g., updates

to the interface can have minimal impact on the data.

– It’s seldom that one person will have a deep understanding of all parts
(e.g., knowledge of Accounting to create the financial statements vs.
knowledge of web design to create the web interface). Different people
with different areas of expertise can work on the different parts.

– One version of the data can be created and maintained and as needed
different ways of interacting and viewing data can be developed.

James Tam

The Strategy Pattern

• The algorithm is determined at run time.

Chess

algorithms

Knight’s

tour

King’s

gambit

Bishop

pair

Computer fighting

style: sparring

simulation

Boxing
Soft style

Hard style

4/10/2014

Design patterns 5

James Tam

The Strategy Pattern (2)

• One object contains a reference to another object.

• The second object determines the algorithm to execute.

James Tam

The Strategy Algorithm: Example

Location of the example:
/home/233/examples/designPatterns/strategy

public class Driver {
 public static void main (String [] args) {
 MyContainer aContainer = null;

 // First algorithm
 aContainer = new MyContainer (new AddAlgorithm());
 System.out.println(aContainer.executeAlgorithm(2,5));

 // Second algorithm
 aContainer = new MyContainer (new MultiplyAlgorithm());
 System.out.println(aContainer.executeAlgorithm(2,5));
 }
}

4/10/2014

Design patterns 6

James Tam

The Strategy Algorithm: An Example (2)

public class MyContainer

{

 private Algorithm anAlgorithm;

 public MyContainer (Algorithm anAlgorithm)

 {

 this.anAlgorithm = anAlgorithm;

 }

 public int executeAlgorithm (int x, int y)

 {

 return(anAlgorithm.execute(x,y));

 }

}

James Tam

The Strategy Algorithm: An Example (3)

public interface Algorithm {
 public int execute (int x, int y);
}

public class AddAlgorithm implements Algorithm {
 public int execute (int x, int y) {
 return (x+y);
 }
}

public class MultiplyAlgorithm implements Algorithm {
 public int execute (int x, int y) {
 return (x*y);
 }
}

4/10/2014

Design patterns 7

James Tam

Advantages Of The Strategy Pattern

• It decouples the context/container from the algorithm used by
the context/container.
– For the container it may allow the context/container to easily substitute

additional algorithms.

– For the algorithm, the algorithm may be used in a number of different
contexts/containers (e.g., sorting algorithms).

James Tam

Side Note: Static Attributes

• Static attributes of a class are initialized when the Java virtual
machine (“java”) loads a class into memory.

• This must be done before any of the methods of the class can
be called (even the constructor).

• Location of an illustrative example:

/home/233/examples/designPatterns/static

4/10/2014

Design patterns 8

James Tam

Static Attributes: Driver Class

public class Driver

{

 public static void main (String [] args)

 {

 Foo aFoo = new Foo();

 }

}

Static Attributes: Class Foo & Bar

public class Foo

{

 private static Bar aBar =

 new Bar ();

 public Foo ()

 {
 System.out.println(">>>
 Trace only: constructor
 Foo() <<<");

 }

}

public class Bar

{

 public Bar ()

 {

 System.out.println(">>>

 Trace only: constructor

 Bar() <<<");

 }

}

4/10/2014

Design patterns 9

James Tam

The Singleton Pattern

• Singleton class: there is only one instance of the class (one
object).

• That object provides a common set of operations for the rest
of the program and globally accessible (variable) data.

• It is not the same as a purely static class.
– Static methods but no variable attributes.

• The Singleton pattern is enforced by making the constructor
private.

• Example singleton class: Random number generator.
– For testing/debugging it is desirable to generate the same sequence of

random numbers.

James Tam

Singleton Example

• Location of the example:
/home/233/examples/designPatterns/singleton

4/10/2014

Design patterns 10

James Tam

Singleton: Driver

public class DriverSingleRandom

{

 public static void main (String [] args)

 {

 SingleRandom aSingleRandom = SingleRandom.getInstance();

 aSingleRandom.setSeed(1);

 for (int i = 0; i < 10; i++)

 System.out.println(i + ": " +

 aSingleRandom.nextInt());

 System.out.println();

 }

}

James Tam

Class SingleRandom

public class SingleRandom
{
 private Random generator;
 private static SingleRandom instance = new SingleRandom ();

 private SingleRandom ()
 {
 System.out.println(">>> Trace only: this.SingleRandom()
 <<<");
 generator = new Random();
 }

 public static SingleRandom getInstance ()
 {
 System.out.println(">>> Trace only:
 SingleRandom.getInstance() <<<");
 return(instance);
 }

1st

2nd

3rd

4/10/2014

Design patterns 11

James Tam

Class SingleRandom (2)

 public void setSeed (int seed)
 {
 System.out.println(">>> Trace only: ref.setSeed() <<<");
 generator.setSeed(seed);
 }

 public int nextInt ()
 {
 System.out.println(">>> Trace only: ref.nextInt() <<<");
 return (generator.nextInt());
 }

}

James Tam

Discussions/Resources: Singleton Pattern

• http://msdn.microsoft.com/en-us/library/ee817670.aspx

• http://www.oracle.com/technetwork/articles/java/singleton-1577166.html

http://msdn.microsoft.com/en-us/library/ee817670.aspx
http://msdn.microsoft.com/en-us/library/ee817670.aspx
http://msdn.microsoft.com/en-us/library/ee817670.aspx
http://msdn.microsoft.com/en-us/library/ee817670.aspx
http://www.oracle.com/technetwork/articles/java/singleton-1577166.html
http://www.oracle.com/technetwork/articles/java/singleton-1577166.html
http://www.oracle.com/technetwork/articles/java/singleton-1577166.html
http://www.oracle.com/technetwork/articles/java/singleton-1577166.html

4/10/2014

Design patterns 12

James Tam

You Should Now Know

• What is a design pattern

• How the three example design patterns work

