
10/22/2014

Composites 1

Composite Types

You will learn how to create new
variables that are collections of other
entities

Types Of Variables

Python

variables

1. Simple

 (atomic)

integer boolean float

2. Aggregate

 (composite)

Strings Lists Tuples

Example Simple type

A variable containing the

number 707 can’t be

meaningfully

decomposed into parts

Example composite
A string (sequence of
characters) can be
decomposed into
individual words.

10/22/2014

Composites 2

James Tam

Addresses And References

• Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human
memory)

• Think of the delivery address as something that is a ‘reference’
to the location that you wish to reach.
– Lose the reference (electronic, paper, memory) and you can’t ‘access’

(go to) the desired location.

121 122 123
123

???

Reference =
123

James Tam

Addresses And References (2)

• Composites are analogous to apartment blocks where there is
an address of the building but somehow there must be some
way to identify each component (in this case the suites).

123 Seasonme street

#1A

#2A #2B

#3A #3B

Full address:
Apt #2B, 123

Seasonme Street

The apartment block is
a composite that can
be broken down into
meaningful parts: the
individual suites

10/22/2014

Composites 3

Small Example Programs Using Strings

• Basic string operations/concepts (some may have already been
covered)
– String1.py (strings as sequences test for inclusion using ‘in’)

– String2.py (iterating strings using the ‘in’ operator)

– String3.py (concatenation, repetition)

– String4.py: (passing a whole string to a function)

– String5.py (indexing the parts of a string)

– String6.py (demonstrating the immutability of strings)

– String7.py (converting to/from a string)

James Tam

Small Example Programs Using Strings (2)

• New/more advanced string examples

– String8.py (string slicing)

– String9.py (string splitting)

– String10.py (determining the size of strings)

– String11.py (testing if strings meet certain conditions)

– String12.py (ASCII values of characters)

– String13.py (Passing strings as parameters – passing a composite)

– string14.py (using string functions that return modified versions of a
string)

– string15.py (string search functions)

10/22/2014

Composites 4

James Tam

Small Example Programs Using Strings (3)

• All the examples will be located in UNIX under:
/home/231/examples/composites

• Also they can be found by looking at the course website under
the URL:
– http://pages.cpsc.ucalgary.ca/~tamj/231/examples/composites

James Tam

Basic String Operations / Functions

• Some of these may have already been covered earlier during
the semester

http://pages.cpsc.ucalgary.ca/~tamj/217/examples/composites

10/22/2014

Composites 5

Strings Can Be Conceptualized As Sequences

• The ‘in’ and ‘not in’ operations can be performed on a
string.

• Branching (example name: “string1.py”)
userNames = "aaa abc username xxx"

userName = input ("User name: ")

if userName in userNames:

 print("User name already taken, enter a new one")

• Looping (iterating through the elements: example name
“string2.py”1)
sentence = "by ur command"

for temp in sentence:

 print("%s-" %temp, end="")

James Tam

String Operations: Concatenation & Repetition

• Concatenation (‘+’): connects two or more strings

• Repetition (‘*’): repeat a series of characters

• Complete online example: string3.py
s1 = "11"

s2 = "17"

s3 = s1 + s2

s4 = s2 * 3

print(s3)

print(s4)

10/22/2014

Composites 6

String: Composite

• Strings are just a series of characters (e.g., alpha, numeric,
punctuation etc.)
– A string can be treated as one entity.

– Online example: “string4.py”

def fun(aString):

 print(aString)

START

aString = "By your command"

fun(aString)

• Individual elements (characters) can be accessed via an index.
– Online example: “string5.py”

– Note: A string with ‘n’ elements has an index from 0 to (n-1)
aString = "hello"

print (aString[1])

print (aString[4])

James Tam

Mutable, Constant, Immutable,

• Mutable types:
– The original memory location can change

• Constants
– Memory location shouldn’t change (Python): may produce a logic error

if modified

– Memory location syntactically cannot change (C++, Java): produces a
syntax error (violates the syntax or rule that constants cannot change)

• Immutable types:
– The original memory location won’t change

– Changes to a variable of a pre-existing immutable type creates a new
location in memory. There are now two locations.

num 12 17

num = 12
num = 17

immutable immutable = 12
immutable = 17

12

17

10/22/2014

Composites 7

Strings Are Immutable

• Even though it may look a string can change they actually
cannot be edited (original memory location cannot change).
– Online example: “string6.py”

s1 = "hi"

print (s1)

s1 = "bye" # New string created

print (s1)

s1[0] = "G" # Error

James Tam

Converting To Strings

• Online example: string7.py
a = 2

b = 2.5

c = a + b # Addition

print(c) # Yields 4.5

str() Converts argument to a String

Convert to string and then concatenate

c = str(a) + str(b)

print(c) # Yields ‘22.5’

10/22/2014

Composites 8

James Tam

Converting From Strings

x = '3'

y = '4.5'

int(): convert to integer

float(): convert to floating point

Convert to numeric and then add

z = int(x) + float(y)

print(z) # Yields 7.5

James Tam

Advanced Operations / Functions

• These operations and functions likely have not yet been
covered

10/22/2014

Composites 9

Substring Operations

• Sometimes you may wish to extract out a portion of a string.
– E.g., Extract first name “James” from a full name “James T. Kirk, Captain”

• This operation is referred to as a ‘substring’ operation in many
programming languages.

• There are two implementations of the substring operation in
Python:
– String slicing

– String splitting

1 The name James T. Kirk is  CBS

String Slicing

• Slicing a string will return a portion of a string based on the
indices provided

• The index can indicate the start and end point of the substring.

• Format:
string_name [start_index : end_index]

• Online example: string8.py
aString = "abcdefghij"

print (aString)

temp = aString [2:5]

print (temp)

temp = aString [:5]

print (temp)

temp = aString [7:]

print (temp)

10/22/2014

Composites 10

James Tam

Example Use: String Slicing

• Where characters at fixed positions must be extracted.

• Example: area code portion of a telephone number
“403-210-9455”

–The “403” area code could then be passed to a data base
lookup to determine the province.

String Splitting

• Divide a string into portions with a particular character
determining where the split occurs.

• Practical usage
– The string “The cat in the hat” could be split into individual words (split

occurs when spaces are encountered).
– “The” “cat” “in” “the” “hat”
– Each word could then be individually passed to a spell checker.

10/22/2014

Composites 11

James Tam

String Splitting (2)

• Format:
string_name.split ('<character used in the split')

• Online example: string9.py

aString = "man who smiles“

Default split character is a space

one, two, three = aString.split()

print(one)

print(two)

print(three)

aString = "James,Tam"

first, last = aString.split(',')

nic = first + " \"The Bullet\" " + last

print(nic)

James Tam

Determining Size

• The ‘len()’ function can count the number of characters in a
string.

• Example program: string10.py
MAX_FILE_LENGTH = 256

SUFFIX_LENGTH = 3

filename = input("Enter new file name (max 256 characters): ")

if (len(filename) > MAX_FILE_LENGTH):

 print("File name exceeded the max size of %d characters, you bad"

 %(MAX_FILE_LENGTH))

else:

 # Find file type, last three characters in string e.g., resume.txt

 endSuffix = len(filename)

 startSuffix = endSuffix - SUFFIX_LENGTH

 suffix = filename[startSuffix:endSuffix]

 if (suffix == "txt"):

 print("Text file")

 print("%d:%d %s" %(startSuffix,endSuffix,suffix))

10/22/2014

Composites 12

String Testing Functions1

• These functions test a string to see if a given condition has
been met and return either “True” or “False” (Boolean).

• Format:
string_name.function_name()

1 These functions will return false if the string is empty (less than one character).

String Testing Functions (2)

Boolean
Function

Description

isalpha() Only true if the string consists only of alphabetic
characters.

isdigit() Only returns true if the string consists only of digits.

isalnum() Only returns true if the string is composed only of
alphabetic characters or numeric digits (alphanumeric)

islower() Only returns true if the alphabetic characters in the string
are all lower case.

isspace() Only returns true if string consists only of whitespace
characters (“ “, “\n”, “\t”)

isupper() Only returns true if the alphabetic characters in the string
are all upper case.

10/22/2014

Composites 13

Applying A String Testing Function

Name of the online example: “string11.py”
ok = False

while (ok == False):

 temp = input("Enter an integer: ")

 ok = temp.isdigit()

 if (ok == False):

 print(temp, "is not an integer")

num = int (temp)

num = num + num

print(num)

Heuristic (end of
“loops”) applied also
(good error message)

James Tam

Strings And References

• Recall the concepts of references and addresses

– A reference contains an address

• A String ‘variable’ does not directly contain the contents of a
string
– Instead the string contains the address (“refers to”) of a string

10/22/2014

Composites 14

James Tam

Recap: Variables

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
– Note however that each location is also numbered!

Image: Curtesy of Rob Kremer

James Tam

References And Strings

• Example:
s1 = "hi"

s2 = s1

s1 @ = 100

RAM (Memory) Address

@ = 100

@ = 200

“hi”

s2 @ = 100

10/22/2014

Composites 15

James Tam

References And Strings

• Example:
s1 = "hi"

s2 = s1

s1 = "hey"

s1 @ = 200

RAM (Memory) Address

@ = 100

@ = 200

“hi”

s2 @ = 100

“hey”

Note:
• The string and the reference to the string are separate e.g., s1

originally referred to the string “hi” but later it referred to the string
“hey”

• The only way to access a string is through the reference

James Tam

References And Strings (NEW)

• The string can ONLY be accessed via an address.

• That is, if there are no references to a string then that string is
lost.

• Example:
secret = input("Tell me your life’s secret")

RAM (Memory) Address

@ = 100

@ = 200

secret @ = 100

“I am really a secret agent spy”

User enters:
“I am really a secret agent
spy”

10/22/2014

Composites 16

James Tam

References And Strings (NEW)

• The string can ONLY be accessed via an address.

• That is, if there are no references to a string then that string is
lost.

• Example:
secret = input("Tell me your life’s secret")

secret = "I like cats"

print(secret)

RAM (Memory) Address

@ = 100

@ = 200

secret

“I like cats”

@ = 200

“I am really a secret agent spy”

String cannot be accessed

ASCII Values

• Each character is assigned an ASCII code e.g., ‘A’ = 65, ‘b’ = 98

• The chr() function can be used to determine the character (string of
length one) for a particular ASCII code.

• The ord() function can be used to determine the ASCII code for a
character (string of length one).

• Example: string12.py
aChar = input("Enter a character whose ASCII value that you wish to

see: ")

print("ASCII value of %s is %d" %(aChar,ord(aChar)))

aCode = int(input("Enter an ASCII code to convert to a character: "))

print("The character for ASCII code %d is %s" %(aCode,chr(aCode)))

10/22/2014

Composites 17

James Tam

Passing Strings As Parameters

• A string is composite so either the entire string or just a sub-
string can be passed as a parameter.

• Full example: string13.py
def fun1(str1):

 print("Inside fun1 %s" %(str1))

def fun2(str2):

 print("Inside fun2 %s" %(str2))

def start():

 str1 = "abc"

 print("Inside start %s" %(str1))

 fun1(str1)

 fun2(str1[1])

Passing whole string

Passing part of a string

Functions That Return Modified Copies Of
Strings

• These functions return a modified version of an existing string (leaves the
original string intact).

 Function Description

lower() Returns a copy of the string with all the alpha characters as lower
case (non-alpha characters are unaffected).

upper() Returns a copy of the string with all the alpha characters as upper
case (non-alpha characters are unaffected).

strip() Returns a copy of the string with all leading and trailing
whitespace characters removed.

lstrip() Returns a copy of the string with all leading (left) whitespace
characters removed.

rstrip() Returns a copy of the string with all trailing (right) whitespace
characters removed.

lstrip(char) Returns a copy of the string with all leading instances of the
character parameter removed.

rstrip(char) Returns a copy of the string with all trailing instances of the
character parameter removed.

Common whitespace characters = sp, tab, enter

10/22/2014

Composites 18

Examples: Functions That Return Modified
Copies

Name of the online example: string14.py

aString = "talk1! AbouT"

print(aString)

aString = aString.upper ()

print(aString)

aString = "xxhello there"

print(aString)

aString = aString.lstrip ('x')

print(aString)

aString = "xxhellx thxrx"

aString = aString.lstrip ('x')

print(aString)

Functions To Search Strings

Function Description

endswith

 (substring)

A substring is the parameter and the function returns true
only if the string ends with the substring.

startswith

 (substring)

A substring is the parameter and the function returns true
only if the string starts with the substring.

find

 (substring)

A substring is the parameter and the function returns the
lowest index in the string where the substring is found (or
-1 if the substring was not found).

replace

 (oldstring,

 newstring)

The function returns a copy of the string with all instances
of ‘oldstring’ replace by ‘newstring’

10/22/2014

Composites 19

Examples Of Functions To Search Strings

Name of the online example: string15.py

temp = input ("Enter a sentence: ")

if not ((temp.endswith('.')) or

 (temp.endswith('!')) or

 (temp.endswith ('?'))):

 print("Not a sentence")

temp = "XXabcXabcabc"

index = temp.find("abc")

print(index)

temp = temp.replace("abc", "^-^")

print(temp)

List

• In many programming languages a list is implemented as an
array.
– This will likely be the term to look for if you are looking for a list-

equivalent when learning a new language.

• Python lists have many of the characteristics of the arrays in
other programming languages but they also have other
features.

10/22/2014

Composites 20

Example Problem

• Write a program that will track the percentage grades for a
class of students. The program should allow the user to enter
the grade for each student. Then it will display the grades for
the whole class along with the average.

Why Bother With A List?

• Name of the example program: classList1.py

CLASS_SIZE = 5

stu1 = float(input("Enter grade for student no. 1: "))

stu2 = float(input("Enter grade for student no. 2: "))

stu3 = float(input("Enter grade for student no. 3: "))

stu4 = float(input("Enter grade for student no. 4: "))

stu5 = float(input("Enter grade for student no. 5: "))

10/22/2014

Composites 21

Why Bother With A List? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

Why Bother With A List? (3)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

NO!

10/22/2014

Composites 22

What Were The Problems With
The Previous Approach?

• Redundant statements.

• Yet a loop could not be easily employed given the types of
variables that you have seen so far.

What’s Needed

• A composite variable that is a collection of another type.
–The composite variable can be manipulated and passed throughout the

program as a single entity.

–At the same time each element can be accessed individually.

• What’s needed…a list!

10/22/2014

Composites 23

Creating A List (Fixed Size)

•Format (‘n’ element list):

 <list_name> = [<value 1>, <value 2>, ... <value n>]

Example:
 # List with 5 elements

 percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Other Examples:
 letters = ['A', 'B', 'A']

 names = ["The Borg", "Klingon ", "Hirogin", "Jem’hadar"]

Element 0 Element 1 Element n-1

0 1 2 3 4

1 These 4 names (Borg, Klingon, Hirogin, Jem’hadar)  are CBS

James Tam

Accessing A List

• Because a list is composite you can access the entire list or
individual elements.

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

• Name of the list accesses the whole list
print(percentages)

• Name of the list and an index “[index]”accesses an element
print(percentages[1])

List

Elements

10/22/2014

Composites 24

James Tam

Negative Indices

• Although Python allows for negative indices (-1 last element, -2
second last…-<size>) this is unusual and this approach is not
allowed in other languages.

• So unless otherwise told your index should be a positive
integer ranging from <zero> to <list size – 1>

James Tam

Accessing Lists

• Lists can only be accessed through the reference
list1 = [1,2,3]

list1 @ = 100

RAM (Memory) Address

@ = 100

@ = 200

[1,2,3]

10/22/2014

Composites 25

James Tam

Accessing Lists

• Lists can only be accessed through the reference
list1 = [1,2,3]

list1 = [3,2,1]

list1 @ = 100

RAM (Memory) Address

@ = 100

@ = 200

[1,2,3]

121 122 123

Reference =
123
Reference =
121

 [3,2,1]

list1 @ = 200

Cannot
access

James Tam

Accessing Lists

• Lists can only be accessed through the reference
list1 = [1,2,3]

list1 = [3,2,1]

list2 = list1

list2 @ = 200

RAM (Memory)

 [3,2,1]

Address

@ = 100

@ = 200

[1,2,3]

list1 @ = 200

Cannot
access

10/22/2014

Composites 26

Creating A List (Variable Size)

• Step 1: Create a variable that refers to the list

• Format:
 <list name> = []

• Example:
 classGrades = []

Creating A List (Variable Size: 2)

• Step 2: Initialize the list with the elements

• General format:
– Within the body of a loop create each element and then add the new

element on the end of the list (‘append’)

10/22/2014

Composites 27

James Tam

Creating A Variable Sized List: Example

classGrades = []

for i in range (0, 4, 1):

 # Each time through the loop: create new element = -1

 # Add new element to the end of the list

 classGrades.append(-1)

classGrades

Before loop
(empty list)

classGrades

i = 0

[0] -1

classGrades

i = 1

[0] -1
[1] -1

classGrades

i = 3

[0]

[1]

[2]

-1

-1

-1
[3] -1

classGrades

i = 2

[0]

[1]

[2]

-1

-1

-1

Revised Version Using A List

•Name of the example program: classList2.py
CLASS_SIZE = 5

def initialize():

 classGrades = []

 for i in range (0, CLASS_SIZE, 1):

 classGrades.append(-1)

 return(classGrades)

10/22/2014

Composites 28

Revised Version Using A List (2)
def read(classGrades):

 total = 0

 average = 0

 for i in range (0, CLASS_SIZE, 1):

 temp = i + 1

 print("Enter grade for student no.", temp, ":")

 classGrades[i] = float(input (">"))

 total = total + classGrades[i]

 average = total / CLASS_SIZE

 return(classGrades, average)

classGrades

[0]

[1]

[2]

-1

-1

-1

[3] -1
[4] -1

After ‘initialize’: before loop

i = 0

temp 1

average

0 total

0

Current grade
i = 1

100 100

100

2

80

80 180
i = 2

3

50

230

i = 3

4

70

50

70

300

i = 4

5

100

100

400

Loop ends now (Recall:
CLASS_SIZE = 5) 80

James Tam

Revised Version Using A List (3)

def display(classGrades, average):

 print()

 print("GRADES")

 print("The average grade is %.2f%%" %average)

 for i in range (0, CLASS_SIZE, 1):

 temp = i + 1

 print("Student No. %d: %.2f%%"

 %(temp,classGrades[i]))

10/22/2014

Composites 29

James Tam

Revised Version Using A List (4)

def start():

 classGrades = initialize()

 classGrades, average = read(classGrades)

 display(classGrades,average)

start()

One Part Of The Previous Example Was Actually
Unneeded

def read(classGrades):

 : :

 return (classGrades, average)

When list is passed

as a parameter…

…returning the list is likely not

needed

More details on ‘why’ coming up shortly!

10/22/2014

Composites 30

Take Care Not To Exceed The Bounds Of The List

[0]

[1]

[2]

[3]

list OK

OK

OK

OK

???

Example: listBounds.py
num1 = 7

list = [0, 1, 2, 3]

num2 = 13

for i in range (0, 4, 1):

 print (list [i])

print ()

print (list [4])

???

RAM

num1 7

num2 13

One Way Of Avoiding An Overflow Of The List

• Use a constant in conjunction with the list.
 SIZE = 100

• The value in the constant controls traversals of the list
 for i in range (0, SIZE, 1):

 myList [i] = int(input ("Enter a value:"))

 for i in range (0, SIZE, 1):

 print (myList [i])

10/22/2014

Composites 31

One Way Of Avoiding An Overflow Of The List

• Use a constant in conjunction with the list.
 SIZE = 100000

• The value in the constant controls traversals of the list
 for i in range (0, SIZE, 1):

 myList [i] = int(input ("Enter a value:"))

 for i in range (0, SIZE, 1):

 print (myList [i])

James Tam

Lists: Searching/Modifying, Len() Function

• Common problem: searching for matches that meet a certain
criteria.

• The matches may simply be viewed or they may modified with
a new value.

• Example: listFindModify.py
grades = ['A','B','C','A','B','C','A']

last = len(grades) - 1

i = 0

while (i <= last):

 if (grades[i] == 'A'): # Search for matches

 grades[i] = 'A+' # Modify element

 i = i + 1

print(grades)

10/22/2014

Composites 32

James Tam

Recap: Variables

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
– Note however that each location is also numbered!

James Tam

Recap: Assignment (Simple Types)

num1 = 2

num2 = 3

num1 = num2

Copy contents from
memory location called
‘num2’ into location called
‘num1’

10/22/2014

Composites 33

James Tam

List Variables Are References To Lists (Not Actual Lists)

• Most of the time the difference between a reference to a list
and the actual list is not noticeable.

• However there will be times that it’s important to make that
distinction e.g., using the assignment operator, passing
parameters.

• Small example:

aList* No address

RAM Address

100,000
100,001
…

200,000

aList = []
aList = [100,8,50]

Note
•A reference to a list actually
contains an address.
•An ‘empty list’ contains no
address yet
•A non-empty list contains the
address of the list

[0]

[1]

[2]

-1

-1

-1

100

8

50

200,000

Create list

Put address in
reference

James Tam

Example: List References

list1 = [1,2,3]

list2 = list1

Looks like two lists, actually just two references to one list

 print(list1,list2)
list1 = [3,2,1]
List1 refers to a new list
print(list1,list2)

10/22/2014

Composites 34

Copying Lists

• If you use the assignment operator to copy from one list to
another you will end up with only one list).

• Name of the example program: copyList1.py

list1 = [1,2]

list2 = [2,1]

print (list1, list2)

Two ref to one list

list1 = list2

print (list1, list2)

list1[0] = 99

print (list1, list2)

Copying Lists (2)

• To copy the elements of one list to another a loop is needed to
copy each element.

• Name of the example program: copyList2.py

list1 = [1,2,3]

list2 = []

for i in range (0, 3, 1):

 list2.append(list1[i])

print(list1, list2)

list1[1] = 99

print(list1, list2)

10/22/2014

Composites 35

James Tam

Recap: Parameter Passing (Simple Types): Behavior Of
“Pass-By-Value”

def fun(num):

 print(num)

 num = num + num

 print(num)

def start():

 num = 1

 print(num)

 fun(num)

 print(num)

start()

James Tam

Passing Lists As Parameters

• When a list variable is passed into function it’s not actually the
whole list that is passed.

 def start():

 aList = [1,2,3]

 fun(aList)

• Instead it’s just a reference to a list (address) that is passed into
the function (which then stores the address in a local variable)
def fun(aList):

Address of list passed
(memory efficient if list is
large and the function is
called many times)

The address is stored in a
local variable

121 122 123
123

123

10/22/2014

Composites 36

James Tam

Passing Lists As Parameters

def fun(aList):

 aList[2] = 7

def start():

 aList = []

 aList = [1,2,3]

 fun(aList)

Fun

Start

Addresses

100,000
100,001
100,002
…

200,000

200,001
200,002
200,003
200,004
200,005
200,006

RAM

aList

[0]

[1]

[2]

1

2

3

200,001

aList 200,001

7

James Tam

Example: Passing Lists As Parameters

• Name of complete example: listParameters.py
def fun1(aListCopy):

 aListCopy[0] = aListCopy[0] * 2

 aListCopy[1] = aListCopy[1] * 2

 return aListCopy

def fun2(aListCopy):

 aListCopy[0] = aListCopy[0] * 2

 aListCopy[1] = aListCopy[1] * 2

10/22/2014

Composites 37

James Tam

Example: Passing Lists As Parameters (2)

def start():

 aList = [2,4]

 print("Original list in start() before function

 calls:\t", end="")

 print(aList)

 aList = fun1(aList)

 print("Original list in start() after calling fun1():\t",

 end="")

 print(aList)

 fun2(aList)

 print("Original list in start() after calling fun2():\t",

 end="")

 print(aList)

start()

James Tam

Passing References (Lists): “Pass-By-Reference”

• A copy of the address is passed into the function.

• The local reference ‘refers’ to the original list (thus the term
‘pass-by-reference).

10/22/2014

Composites 38

James Tam

Passing References: Don’t Do This

• A reference to the list contains the address of a list

• The address stored in the parameter passed in (calling
function) and the local variable that stores the address passed
in (function called) both point to the same list.

• Never (or at least almost never) assign a new value to the
reference (Advanced questions: What happened? Why?)

• Example

def fun(aReference):

 aReference = [3,2,1] # Don’t do this!

def start():

 aReference = [1,2,3]

 fun(aReference)

James Tam

Why Are References Used?

• It looks complex

• Most important reason why it’s done: efficiency
– Since a reference to a list contains the address of the list it allows access

to the list.

– As mentioned if the list is large and a function is called many times the
allocation (creation) and de-allocation (destruction/freeing up memory
for the list) can reduce program efficiency.

• Type size of references ~range 32 bits (4 bytes) to 64 bits (8
bytes)

• Contrast this with the size of a list
– E.g., a list that refers to online user accounts (each account is a list

element that may be multi-Giga bytes in size). Contrast passing an 8
byte reference to the list vs. passing a multi-Gigabyte list.

10/22/2014

Composites 39

James Tam

“Simulation”: What If A List And Not A List Reference
Passed: Creating A New List Each Function Call

• Name of full online example: listExampleSlow.py
MAX = 1000000

def fun(i):

 print("Number of times function has been called %d" %(i))

 aList = []

 for j in range (0,MAX,1):

 aList.append(str(j))

def start():

 for i in range (0,MAX,1):

 fun(i)

start()

When To Use Lists Of Different Dimensions
• Determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

10/22/2014

Composites 40

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section
 First

 student

 Second

 student

 Third

 student
 …

 L01

 L02

 L03

 L04

 L05

 :

 L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

 L02

 L07

 L01

 L03

 L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns

Rows

 L06

 L05

Important:

List elements are

specified in the order of

[row] [column]

Specifying only a single

value specifies the row

10/22/2014

Composites 41

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size)

General structure
 <list_name> = [[<value 1>, <value 2>, ... <value n>],

 [<value 1>, <value 2>, ... <value n>],

 : : :

 : : :

 [<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: display2DList.py
matrix = [[0, 0, 0],

 [1, 1, 1],

 [2, 2, 2],

 [3, 3, 3]]

for r in range (0, 4, 1):

 print (matrix[r]) # Each print displays a 1D list

for r in range (0,4, 1):

 for c in range (0,3,1):

 print(matrix[r][c], end="")

 print()

print(matrix[2][0]) #2 not 0

Creating And Initializing A Multi-Dimensional
List In Python (2): Fixed Size

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

012 (col)

10/22/2014

Composites 42

Creating And Initializing A Multi-Dimensional
List In Python (3)

General structure (Using
loops):
• Create a variable that refers to a

1D list.

• One loop (outer loop) traverses
the rows.

• Each iteration of the outer loop
creates a new 1D list.

• Then the inner loop traverses the
columns of the newly created 1D
list creating and initializing each
element in a fashion similar to
how a single 1D list was created
and initialized.

• Repeat the process for each row
in the list

Row r = 0

c=0 c=1 c=2 c=3

List ref

Row r = 1

Row r = 2

Etc.

James Tam

Creating And Initializing A Multi-Dimensional List In Python
(4)

• Example (Using loops):
aGrid = [] # Create a reference to the list

for r in range (0, 3, 1): # Outer loop runs once for each row

 aGrid.append ([]) # Create an empty row (a 1D list)

 for c in range (0, 3, 1): # Inner loop runs once for each column

 aGrid[r].append (" ") # Create and initialize each element

 # (space) of the 1D list

10/22/2014

Composites 43

Example 2D List Program: A Character-Based
Grid

•Name of the example program: simple_grid.py

aGrid = []

for r in range (0,2,1):

 aGrid.append ([])

 for c in range (0,3,1):

 aGrid[r].append (str(r+c))

for r in range (0,2,1):

 for c in range (0,3,1):

 print(matrix[r][c], end="")

 print()

Quick Note” List Elements Need Not Store The
Same Data Type

• This is one of the differences between Python lists and arrays
in other languages

• Example:
aList = [“James”, “Tam”, “210-9455”, 707]

10/22/2014

Composites 44

Tuples

• Much like a list, a tuple is a composite type whose elements
can consist of any other type.

• Tuples support many of the same operators as lists such as
indexing.

• However tuples are immutable.

• Tuples are used to store data that should not change.

Creating Tuples

• Format:
tuple_name = (value1, value2...valuen)

• Example:
tup = (1,2,"foo",0.3)

10/22/2014

Composites 45

A Small Example Using Tuples

• Name of the online example: tuples1.py

tup = (1,2,"foo",0.3)

print (tup)

print (tup[2])

tup[2] = "bar"

Error (trying to change an immutable):

“TypeError: object does not support item assignment”

• Although it appears that functions in Python can return multiple values
they are in fact consistent with how functions are defined in other
programming languages.

• Functions can either return zero or exactly one value only.

• Specifying the return value with brackets merely returns one tuple back to
the caller.

def fun ():

 return (1,2,3)

def fun (num):

 if (num > 0):

 print("pos ")

 return()

 elif (num < 0):

 print("neg")

 return()

Function Return Values

Returns: A tuple with three elements

Nothing is returned back to the caller

10/22/2014

Composites 46

Functions Changing Multiple Items

• Because functions only return 0 or 1 items (Python returns one
composite) the mechanism of passing by reference (covered
earlier in this section) is an important concept.
– What if more than one change must be communicated back to the caller

(only one entity can be returned).

– Multiple parameters can be passed by reference.

Extra Practice

String:
– Write the code that implements string operations (e.g., splitting) or

string functions (e.g., determining if a string consists only of numbers)

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element).

10/22/2014

Composites 47

After This Section You Should Now Know

• The difference between a simple vs. a composite type

• What is the difference between a mutable and an immutable
type

• How strings are actually a composite type

• Common string functions and operations

• Why and when a list should be used

• How to create and initialize a list (fixed and dynamic size)

• How to access or change the elements of a list

• How to search a list for matches

• Copying lists: How does it work/How to do it properly

After This Section You Should Now Know (2)

• When to use lists of different dimensions

• Basic operations on a 2D list

• What is a tuple, common operations on tuples such as
creation, accessing elements, displaying a tuple or elements

• How functions return zero or one item

• What is a reference and how it differs from a regular variable

• Why references are used

• The two parameter passing mechanisms: pass-by-value and
pass-by-reference

