
CPSC 233: Introduction to Data Structures, Lists 1

James Tam

Introduction To Data Structures

This section introduces the concept of a

data structure as well as providing the

details of a specific example: a list.

James Tam

Tip For Success: Reminder

•Look through the examples and notes before class.

•This is especially important for this section because the

execution of these programs will not be in sequential order.

•Instead execution will appear to ‘jump around’ so it will be

harder to understand the concepts and follow the examples

illustrating those concepts if you don’t do a little preparatory

work.

CPSC 233: Introduction to Data Structures, Lists 2

James Tam

Location Of The Online Examples

•Course website:
- www.cpsc.ucalgary.ca/~tamj/233/examples/lists

•UNIX directory:
- /home/233/examples/lists

James Tam

What Is A Data Structure

•A composite type that has a set of basic operations (e.g., display
elements of a list) that may be performed on instances of that
type.
- It can be accessed as a whole (e.g., pass the entire list as a parameter to a
function).

- Individual elements can also be accessed (e.g., update the value for a
single list element).

•The type may be a built-in part of the programming language
- e.g., lists are included with the Python language and need not be defined
before they can be used

•The type may also be defined by the programmer inside a
program (for languages which don’t include this composite
type)
class List

{

 : :

}

http://www.cpsc.ucalgary.ca/~tamj/233/examples/lists

CPSC 233: Introduction to Data Structures, Lists 3

James Tam

What Is A Data Structure (2)

-In some cases the data structure may only be partially

implemented as part of the language, some operations must be

manually written by the programmer.

-Example: The ability to add an element to a list has been

implemented as a pre-created Python function.
 aGrid = [] # Creates an empty list

 aGrid.append (12) # Adds a number to the end of the list

-In a language such as ‘C’ a list is implemented as an array but

the operation to add elements to the end of the list must be

written by the programmer.

-Lesson: when choosing a programming language look for

built-in support for key features.

James Tam

Lists

•Lists are a type of data structure (one of the simplest and most

commonly used).
- e.g., grades for a lecture can be stored in the form of a list

•List operations: creation, adding new elements, searching for

elements, removing existing elements, modifying elements,

displaying elements, sorting elements, deleting the entire list).

•Basic Java implementation of lists: array, linked list.

CPSC 233: Introduction to Data Structures, Lists 4

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation

(the name of the array is actually a reference to the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory

allocation (the name of the array is actually a reference to

the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

CPSC 233: Introduction to Data Structures, Lists 5

James Tam

Declaring Arrays

• Arrays in Java actually use a reference to the array so creating

an array requires two steps:
1) Declaring a reference to the array

2) Allocating the memory for the array

James Tam

Declaring A Reference To An Array

•Format:
// The number of pairs of square brackets specifies the number of

// dimensions.

<type> [] <array name>;

•Example:
int [] arr;

int [][] arr;

CPSC 233: Introduction to Data Structures, Lists 6

James Tam

Allocating Memory For An Array

•Format:
<array name> = new <array type> [<no elements>];

•Example:
arr = new int [SIZE];

arr = new int [ROW SIZE][COLUMN SIZE];

(Both steps can be combined together):

 int [] arr = new int[SIZE];

James Tam

Arrays: An Example

•The name of the online example is can be found in the directory:
simpleArrayExample

public class Driver

{

 public static void main (String [] args)

 {

 int i;

 int len;

 int [] arr;

CPSC 233: Introduction to Data Structures, Lists 7

James Tam

Arrays: An Example

 Scanner in = new Scanner (System.in);

 System.out.print("Enter the number of array elements: ");

 len = in.nextInt ();

 arr = new int [len];

 System.out.println("Array Arr has " + arr.length + " elements.");

 for (i = 0; i < arr.length; i++)

 {

 arr[i] = i;

 System.out.println("Element[" + i + "]=" + arr[i]);

 }

 }

}

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first

element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to

access (excluding the index and just providing the name of the

list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation

(the name of the array is actually a reference to the array).

•Many utility methods exist.

•Several error checking mechanisms are available.

- Null array references

- Array bounds checking

CPSC 233: Introduction to Data Structures, Lists 8

James Tam

Using A Null Reference

int [] arr = null;

arr[0] = 1;

NullPointerException

James Tam

Exceeding The Array Bounds

int [] arr = new int [4];

int i;

for (i = 0; i <= 4; i++)

 arr[i] = i;

ArrayIndexOutOfBoundsException

(when i = 4)

CPSC 233: Introduction to Data Structures, Lists 9

James Tam

Arrays Of Objects (References)

•Example:
public class Foo

{

 private int num;

 public void setNum (int aNum) { num = aNum; }s

}

•An array of objects is actually an array of references to objects
e.g., Foo [] arr = new Foo [4];

•The elements are initialized to null by default
arr[0].setNum(1);

NullPointerException

James Tam

Arrays Of Objects (References)

•Since each list element is a reference (and references are set to

null by default in Java), before elements can be accessed an

object must be created for each element.

•For single references:
- Foo f; // No object exists yet

- f = new Foo (); // Creates an object and the reference ‘f’ refers to it.

•For arrays of references
Foo [] arr = new Foo [4]; // Creates array of references (each reference is

currently null)

int i;

for (i = 0; I < 4; i++)

 arr[i] = new Foo(); // Each element will refer to a Foo object each time

 // through the loop.

CPSC 233: Introduction to Data Structures, Lists 10

James Tam

A More Complex List Example

•This example will track a book collection.

•It will be implemented as an array and as a linked list.

•List operations implemented:
- Creation of the list

- Erasure of the entire list

- Display of the list (iterative and recursive implementation)

- Adding new elements

- Removing elements

•There will two example implementations: array, linked list

James Tam

List: Array Implementation

•The online example can be found in the directory: array

•Classes
- Book: tracks all the information associated with a particular book

- Manager: implements all the list operations

- Driver: starting execution point, calls methods of the Manager class in

order to change the list.

CPSC 233: Introduction to Data Structures, Lists 11

James Tam

Array Example: UML Diagram

Driver

Book

 -name : String

+Book (newName :

String)

+getName(): String

+setName (newName :

String)

Manager

+MAX_ELEMENTS:int

-bookList:Book[]

-lastElement:int

+Manager ()

+display ()

+displayRecursive()

+doRecursiveDisplay

(curent:int)

+add ()

+eraseList ()

+remove ()

James Tam

Class Book

public class Book

{

 private String name;

 public Book (String aName) { setName(aName); }

 public void setName (String aName) { name = aName; }

 public String getName () { return name; }

}

CPSC 233: Introduction to Data Structures, Lists 12

James Tam

Class Manager

public class Manager

{

 public final int MAX_ELEMENTS = 10;

 private Book [] bookList;

 private int lastElement;

 public Manager ()

 {

 // Code to be described later

 }

James Tam

Class Manager (2)

 public void display()

 {

 // Code to be described later

 }

 public void displayRecursive ()

 {

 // Code to be described later

 }

 private void doRecursiveDisplay (int current)

 {

 // Code to be described later

 }

CPSC 233: Introduction to Data Structures, Lists 13

James Tam

Class Manager (3)

 public void add ()

 {

 // Code to be described later

 }

 public void eraseList ()

 {

 // Code to be described later

 }

 public void remove ()

 {

 // Code to be described later

 }

}

James Tam

Driver Class

public class Driver

{

 public static void main (String [] args)

 {

 Manager aManager = new Manager();

 // Display: Empty listt

 System.out.println("Part I: display empty list");

 aManager.display();

 System.out.println();

 // Destroy list

 System.out.println("Part II: erasing the entire list and displaying the empty

 list");

 aManager.eraseList();

 aManager.display();

 etc.

}

CPSC 233: Introduction to Data Structures, Lists 14

James Tam

List Operations: Arrays (Display)

•Unless it can be guaranteed that the list will always be full

(unlikely) then some mechanism for determining that the end of

the list has been reached is needed.

•If list elements cannot take on certain values then unoccupied

list elements can be ‘marked’ with an invalid value.

•Example: grades (simple array elements)

100

75

65

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

0

80

-1

-1

-1

James Tam

List Operations: Arrays (Display: 2)

•If list elements can’t be marked then a special variable (“last”

index) can be used to mark the last occupied element (works

with an array of simple types or an array of more complex types

like objects).

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

lastOccupiedElement = 3

12

33

77

1

123

-1

-1

-1

CPSC 233: Introduction to Data Structures, Lists 15

James Tam

List Operations: Arrays (Creation)

•Simply declare an array variable
 array name> = new <array type> [<no elements>];

•Constructor
 // Call in the Driver

 Manager aManager = new Manager();

 // In the Manager class

 public Manager ()

 {

 bookList = new Book[MAX_ELEMENTS];

 int i;

 for (i = 0; i < MAX_ELEMENTS; i++)

 bookList[i] = null;

 lastElement = -1;

 }

James Tam

List Operations: Arrays (Insertion At End)

•Insertion at the end.
- Some mechanism is needed to either find or keep track of the last occupied

element.

Bob

Mary

Alice Last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Increment last (new index of last element) Kayla

Insert: Kayla

CPSC 233: Introduction to Data Structures, Lists 16

James Tam

List Operations: Arrays (Insertion At End: 2)

•Driver class
aManager.add();

aManager.add();

•Manager class

 public void add ()

 {

 String newName;

 Scanner in;

James Tam

List Operations: Arrays (Insertion At End: 3)

 if ((lastElement+1) < MAX_ELEMENTS)

 {

 System.out.print("Enter a title for the book: ");

 in = new Scanner (System.in);

 newName = in.nextLine ();

 lastElement++;

 bookList[lastElement] = new Book(newName);

 }

 else

 {

 System.out.print("Cannot add new element: ");

 System.out.println("List already has " + MAX_ELEMENTS + " elements.");

 }

} // End of add

CPSC 233: Introduction to Data Structures, Lists 17

James Tam

List Operations: Arrays (In Order Insertion)

•In order insertion.
- Some mechanism is needed to find the insertion point (search).

- Elements may need to be shifted.

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

James Tam

List Operations: Display List

•Driver Class
 aManager.display();

•Manager Class
 public void display()

 {

 int i;

 System.out.println("Displaying list");

 if (lastElement <= -1)

 System.out.println("\tList is empty");

 for (i = 0; i <= lastElement; i++)

 {

 System.out.println("\tTitle No. " + (i+1) + ": "+ bookList[i].getName());

 }

 }

CPSC 233: Introduction to Data Structures, Lists 18

James Tam

List Operations: Alternative Display List

•Driver class
aManager.displayRecursive();

•Manager class
 public void displayRecursive ()

 {

 if (lastElement <= -1)

 {

 System.out.println("\tList is empty");

 }

 else

 {

 final int FIRST = 0;

 System.out.println("Displaying list");

 doRecursiveDisplay(FIRST);

 }

}

James Tam

List Operations: Alternative Display List (2)

 private void doRecursiveDisplay (int current)

 {

 if (current <= lastElement)

 {

 System.out.println("\tTitle No. " + (current+1) + ": "+

 bookList[current].getName());

 current++;

 doRecursiveDisplay(current);

 }

 }

CPSC 233: Introduction to Data Structures, Lists 19

James Tam

List Operations: Erasure Of Entire List

•Driver Class
 aManager.eraseList();

•Manager Class
 public void eraseList ()

 {

 // Assignment below not needed, nor is there any need in Java

 // to manually delete each element.

 // bookList = null;

 lastElement = -1;

 }

James Tam

List Operations: Arrays (More On Destroying The
Entire List)

•Recall that Java employs automatic garbage collection.

•Setting the reference to the array to null will eventually allow

the array to be garbage collected.
<array name> = null;

•Note: many languages do not employ automatic garbage

collection and in those cases, either the entire array or each

element must be manually de-allocated in memory.

CPSC 233: Introduction to Data Structures, Lists 20

James Tam

Memory Leak

•A technical term for programs that don’t free up dynamically

allocated memory.

•It can be serious problem because it may result in a drastic

slowdown of a program.

James Tam

List Operations: Arrays (Removing Last Element)

•Driver:

aManager.remove();

•Manager:

 public void remove ()

 {

 if (lastElement > -1)

 {

 lastElement--;

 System.out.println("Last element removed from list.");

 }

 else

 System.out.println("List is already empty: Nothing to remove");

 }

CPSC 233: Introduction to Data Structures, Lists 21

James Tam

List Operations: Arrays (Search & Removing
Elements)

•A search is needed to find the removal point.

•Depending upon the index of the element to be deleted, other

elements may need to be shifted.

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

James Tam

Lists: Array Implementation (Summary)

•Advantage:
- Arrays are simple and easy to use

- The array implementation of a list may be completed faster

•Disadvantage:
- Unless the programming language has arrays that automatically resize

(grow and shrink as needed) then using an array is often wasteful.
•The number of elements created is often more than what’s needed

- Insertions and deletions of elements may be slow and inefficient: first

element added/removed many shifts may be required, there are many

elements that must be shifted, each element requires a great deal of

resources to stores.

CPSC 233: Introduction to Data Structures, Lists 22

James Tam

Linked Lists

•An alternate implementation of a list.
- As the name implies, unlike an array the linked list has explicit

connections between elements

- This connection is the only thing that holds the list together.
•Removing a connection to an element makes the element inaccessible.

•Adding a connection to an element makes the element a part of the list.

•The program code is somewhat more complex but some

operations are more efficient (e.g., additions and deletions don’t

require shifting of elements).
- Just change some connections.

•Also linked lists tend to be more memory efficient that arrays.
- The typical approach with an array implementation is to make the array

larger than needed. (Unused elements are allocated in memory and the

space is wasted).

- With a linked list implementation, elements only take up space in memory

as they’re needed.

Start End

James Tam

•Insertions and removal of elements can be faster and more

efficient because no shifting is required.

•Elements need only be linked into the proper place (insertions)

or bypassed (deletions)

Linked Lists

CPSC 233: Introduction to Data Structures, Lists 23

James Tam

•Find the insertion point

Insertion

Alice Charlie

Bob

Bob goes between

Alice and Charlie

James Tam

Insertion (2)

•Change the connections between list elements so the new

element is inserted at the appropriate place in the list.

Alice Charlie

Bob

CPSC 233: Introduction to Data Structures, Lists 24

James Tam

•Find location of the element to be deleted

Deletions

Alice
Charlie Bob

Remove this element

James Tam

Deletions (2)

•Change the connections so that the element to be deleted is no

longer a part of the list (by passed).

Alice Charlie Bob

CPSC 233: Introduction to Data Structures, Lists 25

James Tam

List Elements: Nodes

Freight “data”

Connector

Node

Data (e.g., Book)

Pointer/reference

(connector)

James Tam

Example: Defining A Node

public class BookNode

{

 private Book data;

 private BookNode next;

 : : :

}

Information stored by each element

Connects list elements

CPSC 233: Introduction to Data Structures, Lists 26

James Tam

Example: Marking The Start Of The List

public class Manager

{

 private BookNode head;

}

Case 1:

Empty list

head

null

Case 2: Non-

empty list

head

First node

James Tam

Linked Lists: Important Details

•Unlike arrays, many details must be manually and explicitly

specified by the programmer: start of the list, connections

between elements, end of the list.

•Caution! Take care to ensure the reference to the first element is

never lost.

Data Ptr Data Ptr Data Ptr

Linked

List

Head

1 The approximate equivalent of a pointer (“ptr”) in Java is a reference.

(Marks the start)

CPSC 233: Introduction to Data Structures, Lists 27

James Tam

More On Connections: The Next Pointer

•Because linked lists only create elements as needed a special

marker is needed for the end of the list.

•The ‘next’ attribute of a node will either:
- Contain a reference/address of the next node in the list.

- Contain a null value.

•(That means there is a reference to the start of the list, the next

pointer of each element can be used to traverse the list).

Data Next

Data Next Data Next ...

(Marks the end)

James Tam

List: Linked List Implementation

•The online example can be found in the directory:
- /home/233/examples/lists/linked

•Classes
(These classes are the same as the array version)

- Book: tracks all the information associated with a particular book

- Driver: starting execution point, calls methods of the Manager class in

order to change the list.

- (This class contains the same methods as the array version)

- Manager: implements all the same list operations (the implementation

differs from the array version)

- (New class)

- BookNode: needed so that list elements can be linked. Data for node is a

book, but also it needs a ‘next’ attribute to link the other nodes in the list –

it’s these inter node connections that links all the elements of the list.

CPSC 233: Introduction to Data Structures, Lists 28

James Tam

Linked List Example: UML Diagram

Driver

Book

 -name : String

+Book (newName :

String)

+getName(): String

+setName (newName :

String)

Manager

-head : BookNode

+Manager ()

+display ()

+displayRecursive()

+doRecursiveDisplay

(temp: BookNode, index:int)

+add ()

+eraseList ()

+remove ()

BookNode

 -data : Book

-next : BookNode

+BookNode ()

+BookNode (data:BookNode,

 data:Book)

+setData (data:Book)

+getData ():Book

James Tam

Class Book (Same As Array Implementation)

public class Book

{

 private String name;

 public Book (String aName) { setName(aName); }

 public void setName (String aName) { name = aName; }

 public String getName () { return name; }

}

CPSC 233: Introduction to Data Structures, Lists 29

James Tam

Class Driver (Same As The Array Implementation)

public class Driver

{

 public static void main (String [] args)

 {

 Manager aManager = new Manager();

 // Display: Empty list

 System.out.println("Part I: display empty list");

 aManager.display();

 // Destroy list

 System.out.println("Part II: erasing the entire list and displaying the empty

 list");

 aManager.eraseList();

 aManager.display();

 System.out.println();

 Etc.

James Tam

Class Manager

public class Manager

{

 private BookNode head;

 public Manager ()

 {

 // Code to be described later

 }

CPSC 233: Introduction to Data Structures, Lists 30

James Tam

Class Manager (2)

 public void display()

 {

 // Code to be described later

 }

 public void displayRecursive ()

 {

 // Code to be described later

 }

 private void doRecursiveDisplay (int current)

 {

 // Code to be described later

 }

James Tam

Class Manager (3)

 public void add ()

 {

 // Code to be described later

 }

 public void eraseList ()

 {

 // Code to be described later

 }

 public void remove ()

 {

 // Code to be described later

 }

}

CPSC 233: Introduction to Data Structures, Lists 31

James Tam

Class BookNode (New: Only In Linked List
Version)

public class BookNode

{

 private Book data;

 private BookNode next;

 public BookNode ()

 {

 data = null;

 next = null;

 }

 public BookNode (Book data, BookNode next)

 {

 setData(data);

 setNext(next);

 }

James Tam

Class BookNode (New: Only In Linked List
Version: 2)

 public void setData (Book data) { this.data = data; }

 public Book getData () { return data; }

 public void setNext (BookNode next) { this.next = next; }

 public BookNode getNext () { return next; }

}

CPSC 233: Introduction to Data Structures, Lists 32

James Tam

List Operations: Linked Lists (Creation)

•After a type for the list has been declared then creating a new

list requires that an instance be created and initialized.

•Example:
BookNode head = null;

•Constructor (Manager):
 public Manager ()

 {

 head = null;

 }

James Tam

List Operations: Linked Lists (Display)

•A temporary pointer/reference is used when successively
displaying the elements of the list.

•When the temporary pointer is null, the end of the list has been
reached.

•Graphical illustration of the algorithm:

•Pseudo code algorithm:
while (temp != null)

 display node

 temp = address of next node

Data Ptr Data Ptr Data Ptr

Temp Temp
Temp

Temp

Head

CPSC 233: Introduction to Data Structures, Lists 33

James Tam

Display Method

 public void display()

 {

 int i = 1;

 BookNode temp = head;

 System.out.println("Displaying list");

 if (head == null)

 System.out.println("\tList is empty");

 while (temp != null)

 {

 System.out.println("\tTitle No. " + i + ": "+ temp.getData().getName());

 i = i + 1;

 temp = temp.getNext();

 }

 }

James Tam

Displaying The List: Iterative Implementation
(Loop)

head

null

head

CPSC 233: Introduction to Data Structures, Lists 34

James Tam

Displaying The List: Iterative Implementation
(Loop: 2))

head

BORED OF

THE RINGS
SILENT HILL:

DYING INSIDE

James Tam

Traversing The List: Display

• Study guide:

• Steps (traversing the list to display the data portion of each node onscreen)

1. Start by initializing a temporary reference to the beginning of the list.

2. If the reference is ‘null’ then display a message onscreen indicating that

there are no nodes to display and stop otherwise proceed to next step.

3. While the temporary reference is not null:

a) Process the node (e.g., display the data onscreen).

b) Move to the next node by following the current node's next
reference (set the reference to refer to the next node).

CPSC 233: Introduction to Data Structures, Lists 35

James Tam

Displaying List: Recursive Implementation

•Driver class call:
 aList.displayRecursive();

•Manager class:
 public void displayRecursive()

 {

 System.out.println("Displaying list");

 if (head == null)

 System.out.println("\tList is empty");

 else

 {

 final int FIRST = 0;

 doRecursiveDisplay (head,FIRST);

 }

 }

James Tam

Displaying List: Recursive Implementation (2)

 private void doRecursiveDisplay (BookNode temp, int index)

 {

 if (temp == null)

 return;

 else

 {

 index++;

 System.out.println("\tTitle No. " + index + ": "+

 temp.getData().getName());

 temp = temp.getNext();

 doRecursiveDisplay(temp,index);

 }

 }

CPSC 233: Introduction to Data Structures, Lists 36

James Tam

Displaying The List: Recursive Implementation

head

null

head

James Tam

Displaying The List: Recursive Implementation (2)

head

BORED OF

THE RINGS
SILENT HILL:

DYING INSIDE

CPSC 233: Introduction to Data Structures, Lists 37

James Tam

List Operations: Linked Lists (Search)

•The algorithm is similar to displaying list elements except that

there must be an additional check to see if a match has occurred.

•Conditions that may stop the search:

Temp

Data Ptr Data Ptr Data Ptr

Head

1. Temp = null (end)?

2. Data match?

James Tam

List Operations: Linked Lists (Search: 2)

•Pseudo code algorithm:
Temp refers to beginning of the list

If (temp is referring to empty list)

 display error message “Empty list cannot be searched”

While (not end of list AND match not found)

 if (match found)

 stop search or do something with the match

 else

 temp refers to next element

CPSC 233: Introduction to Data Structures, Lists 38

James Tam

List Operations That Change List Membership

•These two operations (add/remove) change the number of

elements in a list.

•The first step is to find the point in the list where the node is to

be added or deleted (typically requires a search).

•Once the point in the list has been found, changing list

membership is merely a reassignment of pointers/references.
- Again: unlike the case with arrays, no shifting is needed.

James Tam

List Operations: Linked Lists (Insertion)

•Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

CPSC 233: Introduction to Data Structures, Lists 39

James Tam

List Operations: Linked Lists (Insertion: 2)

•Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 3)

•Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

CPSC 233: Introduction to Data Structures, Lists 40

James Tam

List Operations: Linked Lists (Insertion: 4)

•Pseudo code algorithm:

Node to be inserted refers to node after insertion point

Node at insertion point refers to the node to be inserted

James Tam

List Operations: Linked Lists (Removing Elements)

•Graphical illustration of the algorithm

NULL

LIST Remove

CPSC 233: Introduction to Data Structures, Lists 41

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

•Graphical illustration of the algorithm

NULL

LIST Remove

Current Previous

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

•Graphical illustration of the algorithm

NULL

LIST Remove

Current Previous

Node to be removed has been bypassed

(effectively deleted from the list)

CPSC 233: Introduction to Data Structures, Lists 42

James Tam

List Operations: Linked Lists (Removing
Elements: 3)

•Pseudo code algorithm:

Previous node refers to the node referred by current node

James Tam

Removing A Node From The List (4)

 public void remove ()

 {

 // CASE 1: EMPTY LIST

 if (head == null)

 System.out.println("List is already empty: Nothing to remove");

 // CASE 2: NON-EMPTY LIST

 else

 {

 BookNode previous = null;

 BookNode current = head;

 String searchName = null;

 boolean isFound = false;

 String currentName;

 Scanner in = new Scanner(System.in);

 System.out.print("Enter name of book to remove: ");

 searchName = in.nextLine();

CPSC 233: Introduction to Data Structures, Lists 43

James Tam

Removing A Node From The List (5)

 // Search for point of removal

 while ((current != null) &&

 (isFound == false))

 {

 currentName = current.getData().getName();

 if (searchName.compareToIgnoreCase(currentName) == 0)

 isFound = true;

 else

 {

 previous = current;

 current = current.getNext();

 }

 }

James Tam

Removing A Node From The List (6)

 // CASE 2A OR 2B: MATCH FOUND (REMOVE A NODE)

 if (isFound == true)

 {

 System.out.println("Removing book called " + searchName);

 // CASE 2A: REMOVE THE FIRST NODE

 if (previous == null)

 head = head.getNext();

 // CASE 2B: REMOVE ANY NODE EXCEPT FOR THE FIRST

 else

 previous.setNext(current.getNext());

 }

 // CASE 3: NO MATCHES FOUND (NOTHING TO REMOVE).

 else

 System.out.println("No book called " + searchName + " in the

 collection.");

 }

 }

}

CPSC 233: Introduction to Data Structures, Lists 44

James Tam

Removing A Node From The List (7)

•Case 1: Empty List

head

null

searchName:

isFound:

James Tam

•Case 2A: Remove first element

Removing A Node From The List (8)

head

searchName:

isFound:

The Miko

The Miko
I AM AN AMERICAN

SOLDIER TOO

CPSC 233: Introduction to Data Structures, Lists 45

James Tam

•Case 2B: Remove any node except for the first

Removing A Node From The List (9)

head

searchName:

isFound:

ENDGAME

ENDGAME CHINESE GUNG FU

James Tam

•Case 3: No match

Removing A Node From The List (10)

head

searchName:

isFound:

MOBY DICK

A CHRISTMAS

CAROL

THE PRICE OF FREEDOM:

A WING COMMANDER NOVEL

CPSC 233: Introduction to Data Structures, Lists 46

James Tam

Removing A Node From The List

Study guide:

• Main variables:
1. A temporary reference: refers to the node to be deleted. It is needed

so that the program can retain a reference to this node and free up
the memory allocated for it after the node has been ‘bypassed’ (step
4A on the next slides).

2. A previous reference: refer to the node just prior to the one to be
deleted. The ‘next’ field of this reference will be set to skip over
the node to be deleted and will instead point to the node that
immediately follows the node to be deleted.

3. The head reference: The actual reference (and not a copy) is needed
if the first node is deleted.

4. The search key – in this example it is a string but it could be any
arbitrary type as long as a comparison can be performed.

5. A boolean variable that stores that status of the search (the search
flag). (Start the search by assuming that it’s false and the flag is set
to true when a successful match occurs.

James Tam

Removing A Node From The List (2)

• Steps

1. Initialize the main variables.

a) The temporary reference starts at the front of the list.

b) The boolean flag is set to false (no matches have been found yet).

c) The previous reference is set to null (to signify that there is no element prior

to the first element).

2. If the list is empty (temporary reference is null) display a status message

to the user (e.g., “list is empty”) and stop the removal process.

3. While the end of the list has not been reached (temporary reference is not

null) AND no matches have been found yet (boolean flag is false) :

a) Compare the search key with the appropriate field in the node referred to by

the temporary reference.

b) If there’s a match then set the search flag to true (it’s true that a match has

been found now).

c) If no match has been found set the previous reference to the node referred to

by the temporary reference and move the temporary reference to the next

node in the list.

CPSC 233: Introduction to Data Structures, Lists 47

James Tam

Removing A Node From The List (3)

4. (At this point either the whole list has been traversed or there has been

successful match and the search has terminated early):

a. If the search flag is set to true then a match has been found.
i. If the first node is the one to be deleted (previous reference is null) then set the head

reference to the second node in the list.

ii. If any other node is to be deleted then bypass this node by setting the ‘next’ field of
the node referred to by the previous reference to the node immediately following the
node to be deleted.

iii. In both cases the temporary reference still refers to the node to be deleted. (If
applicable) free up the allocated memory using the temporary reference.

b. If the search flag is set to false no matches have been found, display a status

message to the user (e.g., “no matches found”).

James Tam

List Operations: Linked Lists (Destroying The
Entire List)

•In Java: removing an entire list is similar to how it’s done with

the array implementation.
head = null;

•Important reminder: many languages to not employ automatic

garbage collection and in those cases each node must be

manually de-allocated in memory (step through each element in

the list and free up the memory but take care not to lose the

connection with the rest of the list).

•Linked list example:
 public void eraseList ()

 {

 head = null;

 }

 Data Ptr Data Ptr Data Ptr

When???

head
null

CPSC 233: Introduction to Data Structures, Lists 48

James Tam

After This Section You Should Now Know

•What is a data structure

•How a data structure may be defined in Java

•Common list operations

•How a Java array employs dynamic memory allocation

•What is a memory leak

•How the common list operations are implemented using linked

lists

•What are the advantages and disadvantages of implementing a

list as an array vs. as a linked list

