
2/3/2014

1

© Jalal Kawash 2010

Trees &
Information Coding: 3

Peeking into Computer Science

© Jalal Kawash 2010 Peeking into Computer Science

Reading Assignment

 Mandatory: Chapter 3 – Section 3.5

2

2/3/2014

2

Information Coding
An application of trees

3

© Jalal Kawash 2010 Peeking into Computer Science

Objectives

At the end of this section, the student will be able
to:

1. Understand the need for variable-length coding
(VLC)

2. Understand how compression works

3. Calculate the space savings with VLC

4. Understand decoding problems with VLC

5. Define non-prefix VLC

6. Use Huffman’s algorithm and binary trees to
assign optimized non-prefix VLC

7. Represent BL trees as nested lists

2/3/2014

3

© Jalal Kawash 2010 Peeking into Computer Science

Back to Coding (JT: Review)

 Assume we have a file that contains data
composed of 6 symbols only:

 A, I, C, D, E, and S (for space)

ACE DICE AIDE CAID
EAD DAICED …

5

© Jalal Kawash 2010 Peeking into Computer Science

Back to Coding

 Assume we have a file that contains data
composed of 6 symbols only:

 A, I, C, D, E, and S (for space)

ACESDICESAIDESCAID
EADSDAICED …

6

2/3/2014

4

© Jalal Kawash 2010 Peeking into Computer Science

Coding

 If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

7

© Jalal Kawash 2010 Peeking into Computer Science

Coding (JT: Review)

 The first question is

 How many symbols do we need to
represent each character?

 The objective is to keep the size of the file
as small as possible

 We have 6 characters (messages) and two
symbols (0 and 1)

 2 is not enough, since 22 is 4

8

2/3/2014

5

© Jalal Kawash 2010 Peeking into Computer Science

2 bits are not enough (JT: Review)

 00 for A

 01 for S

 10 for I

 11 for E

 We cannot represent the rest C and D

 3 works, since 23 is 8, so we can represent
up to 8 characters and we only have 6

9

© Jalal Kawash 2010 Peeking into Computer Science

3 bits are more than enough (JT:
Review)

 Say
 000 for A
 001 for S
 010 for I
 011 for E
 100 for C
 101 for D
 110 not used
 111 not used

10

2/3/2014

6

© Jalal Kawash 2010 Peeking into Computer Science

Coding (JT: Review)

 If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

 Each character needs 3 bits

 Hence, we need 3x1000 = 3000 bits

11

© Jalal Kawash 2010 Peeking into Computer Science

Compression

 How does file compression work?

 Huffman’s codes reduce the size of a file
by using variable-length codes for
characters

12

2/3/2014

7

© Jalal Kawash 2010 Peeking into Computer Science

Compression

 Analyzing the file we find that

 35% are S
 28% of the characters are A
 20% are E
 7% are I
 6% are C
 4% are D

 Some characters are more frequent than others

13

© Jalal Kawash 2010 Peeking into Computer Science

Variable-Length Codes

 To reduce the size of the file, we can use
shorter codes for frequent characters
◦ We can use longer codes for infrequent characters

 35% are S (use 2 bits for S)
 28% are A (use 2 bits for A)
 20% are E (use 2 bits for E)
 7% are I (use 3 bits for I)
 6% are C (use 4 bits for C)
 4% are D (use 4 bits for D)

14

2/3/2014

8

© Jalal Kawash 2010 Peeking into Computer Science

Compressed File Size

 If we use this coding, what is the size of the file?
 350 S’s (35% of 1000) require 700 bits (2 bits

for each S)
 200 E’s require 400 bits (2 bits)
 280 A’s require 560 bits (2 bits)
 70 I’s require 210 bits (3 bits)
 60 C’s require 240 bits (4 bits)
 40 D’s require 160 bits (4 bits)

 Total is 2270 bits
 Recall that with fixed codes, the size is 3000 bits
 Compressed file size is about 76% of original

size

15

© Jalal Kawash 2010 Peeking into Computer Science

Problems with Variable-Length
Codes

 Not any variable-length code works

 Assume A’s code is 0

 C’s code is 1

 E’s code is 01

 The code 0101 could correspond to ACE,
EAC, ACAC, or EE

16

2/3/2014

9

© Jalal Kawash 2010 Peeking into Computer Science

Prefix Codes

 Codes that work must have the property:

 No code can be the prefix of another code

 Called Non-Prefix Codes

 0 is a prefix of 01, this is why our coding
failed

 Another example: 0101 is a prefix of
010111

 17

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes

 Non-Prefix codes can be generated using a
binary tree

 Start from a binary tree

 Label edges to left children with 0

 Label edges to right children with 1

 Record the labels on the path from the root
to the leaves

 Each path corresponds to a non-prefix code

 18

2/3/2014

10

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes from a Binary
Tree

0

0

0

0

0

1

1 1

1

1

19

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes from a Binary
Tree

A’s code: 00

B’s 0100

C’s 0101

D’s 011

E’s 10

F’s 11

E F A

D

C B

0

0

0

0

0

1

1 1

1

1

20

2/3/2014

11

© Jalal Kawash 2010 Peeking into Computer Science

No code is a prefix of another

00

0100

0101

011

10

11

E F A

D

C B

0

0

0

0

0

1

1 1

1

1

21

© Jalal Kawash 2010 Peeking into Computer Science

No Confusion

A:00, B:0100, C:0101, D:011,
E:10, F:11

010000011

No other interpretation
◦ Parsing left to right

◦ (JT’s extra: parsing refers to ‘reading’ or
‘breaking into meaningful portions’)

B A D

22

2/3/2014

12

© Jalal Kawash 2010 Peeking into Computer Science

No Confusion

A:00, B:0100, C:0101, D:011,
E:10, F:11

111010011

 So How do we generate such codes?

F E D E

23

© Jalal Kawash 2010 Peeking into Computer Science

Huffman’s Coding

 Build a binary tree

 The characters in a file are the leaves

 The most frequent characters should be
closer to the root, generating shorter
codes

 Assign the codes, based on this tree

24

2/3/2014

13

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 1

1. Assign to each symbol its weight
(frequency)

Each of these is a tree of size one!

A C D E S I

35 28 6 4 20 7

25

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 2

2. Choose two trees that have the
minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights
(JT: next slide)

A C D E S I

35 28 6 4 20 7

D C

New tree

New tree weight 6+4 = 10

26

2/3/2014

14

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 2

2. Choose two trees that have the
minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

27

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Repeat

 Repeat Step 2 until we have a single tree

A E S I

35 28 20 7

D C

10

28

2/3/2014

15

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

2. Choose two trees that have the minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

D C I

29

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

2. Choose two trees that have the minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

I

D C

New tree weight 10+7 = 17

30

2/3/2014

16

© Jalal Kawash 2010 Peeking into Computer Science

 A S

35 28

E

20

I

D C

17
31

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

 A S

35 28

E

20

I

D C

17

32

2/3/2014

17

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

20

I

D C

17

33

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

Weight is 20+17 = 37

E

20
37

34

2/3/2014

18

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

37

Weight is 20+17 = 37

35

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

37

Weight is 35+28 = 63

63

36

2/3/2014

19

© Jalal Kawash 2010 Peeking into Computer Science

S A

E

I

D C

37
63

37

© Jalal Kawash 2010 Peeking into Computer Science

S A E

I

D C

37

63

38

2/3/2014

20

© Jalal Kawash 2010 Peeking into Computer Science

S A E

I

D C

39

© Jalal Kawash 2010 Peeking into Computer Science

3. Label left edges with 0 and right
edges with 1

Step 3

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

40

2/3/2014

21

© Jalal Kawash 2010 Peeking into Computer Science

 Read the labels on the path from the
root to each leaf, this is its code

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

41

© Jalal Kawash 2010 Peeking into Computer Science

 A’s code is 01

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

42

2/3/2014

22

© Jalal Kawash 2010 Peeking into Computer Science

 A’s code is 01
 C’s is 1100
 S’s is 00
 E’s is 10
 D’s is1101
 I’s is 111

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

43

© Jalal Kawash 2010 Peeking into Computer Science

More Frequent Characters have
shorter codes

 35% are S (00, 2 bits)

 28% are A (01, 2 bits)

 20% are E (10, 2 bits)

 7% are I (111, 3 bits)

 6% are C (1100, 4 bits)

 4% are D (1101, 4 bits)

44

2/3/2014

23

© Jalal Kawash 2010 Peeking into Computer Science

Recall This Analysis?

 If we use this coding, what is the size of the file?
 350 S’s (35% of 1000) require 700 bits (2 bits

for each S)
 280 A’s require 560 bits
 200 E’s require 400 bits
 70 I’s require 210 bits
 60 C’s require 240 bits
 40 D’s require 160 bits

 Total is 2270 bits
 Recall that with fixed codes, the size is 3000 bits
 Compressed file size is about 76% of original

size

45

© Jalal Kawash 2010 Peeking into Computer Science

David Huffman

 1925-1999

 US Electrical Engineer

 Contributions in coding theory, signal
design for radar and communications, and
logic circuits

 He wrote his coding algorithm as a
graduate students at MIT

46

2/3/2014

24

© Jalal Kawash 2010 Peeking into Computer Science

Concluding Notes

 Even though coding gave C and D codes
of length 4 (compared to 3 in fixed
coding), it was beneficial

 No code generated by Huffman’s method
can be a prefix of another code

 Many compression tools use a
combination of different coding methods,
Huffman’s is among them

47

© Jalal Kawash 2010 Peeking into Computer Science

JT’s Extra: Uses Of Compression

 Image and video files

Hi-res: JPEG 322 KB

Hi-res: TIF 14.1 MB
Images: Courtesy of James Tam

