Location Of The Online Examples

*WWW:

- www.cpsc.ucalgary.ca/~tamj/231/examples/list_functions

*UNIX:

- /home/231/examples/list_functions

James Tam

Important Things To Keep In Mind

*(What you should now): Lists are a composite type that can be
decomposed into other types.

*Other important points:
- Copying lists
- Passing lists as parameters

James Tam




Copying Lists

*Reminder:
- A list variable is not actually a list!
- Instead that list variable is actually a reference to the list.

- (This is important because if you use the assignment operator to copy from
list to another you will end up with only one list).

list1 =[1,2]
list2 = [2,1]
print (list1, list2)

list1 = list2
print (list1, list2)

list1[0] = 99
print list1, list2

James Tam

Copying Lists (2)

Reminder:

- To copy the elements of one list to another a loop is needed to copy each
successive elements.

list1 = [1,2,3,4]
list2 = []

foriinrange (0, 4, 1):
list2.append(list1[i])

print (list1, list2)

list1[1] = 99
print (list1, list2)

James Tam




Parameter Passing

*What you’ve seen so far:

- Passing a parameter into a function makes a local copy of the value passed
in

- This is referred to as PASS BY VALUE.

- Changes made to the parameter will only be made to the local copy and not
the original.

James Tam

Parameter Passing (2)

*Passing lists into functions is done using a different mechanism

-When a {ist is passed into the function a local reference refers to the
original list.

- Example:
- Name of the online example: parameter1.py

def fun (list):
list[0] = 99
print (list)

def main ():
list =[1,2,3]
print (list)
fun (list)
print (list)

main ()

- Changes made to the local reference will change the original list.

- This parameter passing mechanism is referred to as PASS BY REFERENCE (the
local reference refers to the original 1188

James Tam




Parameter Passing (3)

*Exception: if the local reference is assigned to another list then it will
obviously no longer refer to the original list.

*(Effect: changes made via the local reference will change the local list and
not the original that was passed into the function).

*Name of the online example: parameter2.py

def fun (list):
list = [3,2,1]
print list

def main ():
list =[1,2,3]
print list
fun (list)
print list

main ()

James Tam




