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Information Coding

An application of trees

At the end of this section, the student will be able
to:

1. Understand the need for variable-length coding
(VLC)

Understand how compression works

Calculate the space savings with VLC
Understand decoding problems with VLC
Define non-prefix VLC

Use Huffman’s algorithm and binary trees to
assign optimized non-prefix VLC
7. Represent BL trees as nested lists
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« Assume we have a file that contains data
composed of 6 symbols only:

«A, I C, D, E, and S (for space)

ACE DICE AIDE CAID

EAD DAICED ...

Back to Coding (JT: Review)
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composed of 6 symbols only:

«A, I C, D, E, and S (for space)

ACE DICE AIDE CAID
EAD DAICED ...

Back to Coding (JT: Review)
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If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

-" Coding (JT: Review)
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The first question is

How many symbols do we need to
represent each character?

The objective is to keep the size of the file
as small as possible

We have 6 characters (messages) and two
symbols (0 and 1)

2 is not enough, since 22 is 4

g Coding (JT: Review)
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00 for A
01 for S
10 for I
11 for E

We cannot represent the rest C and D

3 works, since 23 is 8, so we can represent
up to 8 characters and we only have 6

-“2 bits are not enough (JIT: Review)
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Say

000 for A
001 for S
010 for I
011 for E
100 for C
101 for D
110 not used
111 not used

— I =

3 bits are more than enough (JT:
ifﬁav]ew)
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If the file has 1000 characters, how many
bits (0Os and 1s) are needed to code the
file?

Each character needs 3 bits
Hence, we need 3x1000 = 3000 bits

-" Coding (JT: Review)
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How does file compression work?

Huffman’s codes reduce the size of a file
by using variable-length codes for
characters
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Analyzing the file we find that

35% are S

28% of the characters are A
20% are E

7% are 1

6% are C

4% are D

Some characters are more frequent than others
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If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

200 E’s require 400 bits (2 bits)

280 A’s require 560 bits (2 bits)

70 I's require 210 bits (3 bits)

60 C’s require 240 bits (4 bits)

40 D’s require 160 bits (4 bits)

Total is 2270 bits
Recall that with fixed codes, the size is 3000 bits

Compressed file size is about 76% of original
size
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If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

200 E's require 400 bits

280 A’s require 560 bits

70 I's require 210 bits

60 C’'s require 240 bits

40 D’s require 160 bits

Total is 2270 bits

Recall that with fixed codes, the size is 3000 bits
Compressed file size is about 76% of original
size
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Not any variable-length code works
Assume A’s code is 0

C'scodeis 1

E's code is 01

The code 0101 could correspond to ACE,
EAC, ACAC, or EE
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Codes that work must have the property:
No code can be the prefix of another code
Called Non-Prefix Codes

0 is a prefix of 01, this is why our coding
failed

Another example: 0101 is a prefix of
010111
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Non-Prefix codes can be generated using a
binary tree

Start from a binary tree
Label edges to left children with 0
Label edges to right children with 1

Record the labels on the path from the root
to the leaves

Each path corresponds to a non-prefix code
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Non-Prefix Codes from a Binary
iTree

k Peeking into Computer Science © Jalal Kawash 2010 19 J

«A’s code: 00
*B’s 0100
«C's 0101
-D’s 011

«E’s 10

°F's 11

Non-Prefix Codes from a Binary
iTree
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00 O,
0100 0 0.

0101 Q. 606
011 ¢ 9 0

10 ® ©

11
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B

A:00, B:0100, C:0101, D:011,
E:10, F: 11
010000011

B A D
No other interpretation

Parsing left to right

(JT's extra: parsing refers to ‘reading’ or
‘breaking into meaningful portions’)
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A:00, B:0100, C:0101, D:011,
E:10, F: 11
111010011
FEE D

So How do we generate such codes?
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Build a binary tree
The characters in a file are the leaves

The most frequent characters should be
closer to the root, generating shorter
codes

Assign the codes, based on this tree
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1. Assign to each symbol its weight
(frequency)

28 6 4 20 35 7

Each of these is a tree of size onel!

Huffman's Coding - Step 1
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2. Choose two trees that have the
minimum weights
Replace these two trees with a new tree with new root

o Make the tree with the smaller weight a right child

o The weight of the new tree is the sum of old weights
(JT: next slide)

28 6 4 20 35 7
New tree

New tree weight 6+4 = 10

Huffman's Coding - Step 2
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2. Choose two trees that have the
minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
The weight of the new tree is the sum of old weights

20 35 7

28
10
Huffman's Coding - Step 2
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» Repeat Step 2 until we have a single tree

28 35 7

10 20

Huffman's Coding - Repeat
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2. Choose two trees that have the minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
° The weight of the new tree is the sum of old weights

28 10 20 35 7

iStep 2 Again
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2. Choose two trees that have the minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
o The weight of the new tree is the sum of old weights
28 10 20 35 7
New tree weight 10+7 = 17
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28 20

Step 2 Again
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28 20 17

35

‘ Peeking into Computer Science © Jalal Kawash 2010 33
O @O, O,
28 20 35
-_ Weight is 20+17 = 37
| 34
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Weight is 20+17 = 37
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35 63 28 37
-_ Weight is 35+28 = 63
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3. Label left edges with 0 and right
edges with 1
iStep 3
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* Read the labels on the path from the
root to each leaf, this is its code

41
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+ A's code is 01
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» A’'s code is 01
» C’sis 1100
»+S’sis 00
*E’sis 10
+D’'sis1101
°I'sis 111
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- 35% are S
*« 28% are A
« 20% are E
« 7% arel
* 6% are C
* 4% are D

' More Frequent Characters have
-shorter codes
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If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

280 A’s require 560 bits

200 E's require 400 bits

70 I's require 210 bits

60 C’'s require 240 bits

40 D’s require 160 bits

Total is 2270 bits

Recall that with fixed codes, the size is 3000 bits
Compressed file size is about 76% of original
size
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1925-1999

US Electrical Engineer
Contributions in coding theory, signal
design for radar and communications, and
logic circuits

He wrote his coding algorithm as a
graduate students at MIT
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Even though coding gave C and D codes
of length 4 (compared to 3 in fixed
coding), it was beneficial

No code generated by Huffman’s method
can be a prefix of another code

Many compression tools use a
combination of different coding methods,
Huffman’s is among them
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