Information Codi

Trees

Peeking into Computer Science

© Jalal Kawash 2010

=
|

- Mandatory

: Chapter 3 - Section 3.5

Reading Assignment

Peeking into Computer Science

© Jalal Kawash 2010 2

10/1/2012



10/1/2012

Peeking into

Peeking into

Peeking into

Peeking into Computer Science

Information Coding

An application of trees

At the end of this section, the student will be able
to:

1. Understand the need for variable-length coding
(VLC)

Understand how compression works

Calculate the space savings with VLC
Understand decoding problems with VLC
Define non-prefix VLC

Use Huffman’s algorithm and binary trees to
assign optimized non-prefix VLC
7. Represent BL trees as nested lists

o un s W

— . -

; - \ et
ut B - Ol W

Peeking into Computer Science © Jalal Kawash 2010




e
|

« Assume we have a file that contains data
composed of 6 symbols only:

«A, I C, D, E, and S (for space)

ACE DICE AIDE CAID

EAD DAICED ...

Back to Coding (JT: Review)

Peeking into Computer Science © Jalal Kawash 2010

i
|

» Assume we have a file that contains data
composed of 6 symbols only:

«A, I C, D, E, and S (for space)

ACE DICE AIDE CAID
EAD DAICED ...

Back to Coding (JT: Review)

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012



If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

-" Coding (JT: Review)

Peeking into Computer Science © Jalal Kawash 2010

The first question is

How many symbols do we need to
represent each character?

The objective is to keep the size of the file
as small as possible

We have 6 characters (messages) and two
symbols (0 and 1)

2 is not enough, since 22 is 4

g Coding (JT: Review)

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012



00 for A
01 for S
10 for I
11 for E

We cannot represent the rest C and D

3 works, since 23 is 8, so we can represent
up to 8 characters and we only have 6

-“2 bits are not enough (JIT: Review)

Peeking into Computer Science © Jalal Kawash 2010

Say

000 for A
001 for S
010 for I
011 for E
100 for C
101 for D
110 not used
111 not used

— I =

3 bits are more than enough (JT:
ifﬁav]ew)

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012



10/1/2012

If the file has 1000 characters, how many
bits (0Os and 1s) are needed to code the
file?

Each character needs 3 bits
Hence, we need 3x1000 = 3000 bits

-" Coding (JT: Review)

Peeking into Computer Science © Jalal Kawash 2010

How does file compression work?

Huffman’s codes reduce the size of a file
by using variable-length codes for
characters

Peeking into Computer Science © Jalal Kawash 2010




Analyzing the file we find that

35% are S

28% of the characters are A
20% are E

7% are 1

6% are C

4% are D

Some characters are more frequent than others

Peeking into Computer Science © Jalal Kawash 2010

If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

200 E’s require 400 bits (2 bits)

280 A’s require 560 bits (2 bits)

70 I's require 210 bits (3 bits)

60 C’s require 240 bits (4 bits)

40 D’s require 160 bits (4 bits)

Total is 2270 bits
Recall that with fixed codes, the size is 3000 bits

Compressed file size is about 76% of original
size

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012



If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

200 E's require 400 bits

280 A’s require 560 bits

70 I's require 210 bits

60 C’'s require 240 bits

40 D’s require 160 bits

Total is 2270 bits

Recall that with fixed codes, the size is 3000 bits
Compressed file size is about 76% of original
size

Peeking into Computer Science © Jalal Kawash 2010

Not any variable-length code works
Assume A’s code is 0

C'scodeis 1

E's code is 01

The code 0101 could correspond to ACE,
EAC, ACAC, or EE

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012



10/1/2012

Codes that work must have the property:
No code can be the prefix of another code
Called Non-Prefix Codes

0 is a prefix of 01, this is why our coding
failed

Another example: 0101 is a prefix of
010111

Peeking into Computer Science © Jalal Kawash 2010

Non-Prefix codes can be generated using a
binary tree

Start from a binary tree
Label edges to left children with 0
Label edges to right children with 1

Record the labels on the path from the root
to the leaves

Each path corresponds to a non-prefix code

Peeking into Computer Science © Jalal Kawash 2010




Non-Prefix Codes from a Binary
iTree

k Peeking into Computer Science © Jalal Kawash 2010 19 J

«A’s code: 00
*B’s 0100
«C's 0101
-D’s 011

«E’s 10

°F's 11

Non-Prefix Codes from a Binary
iTree

t Peeking into Computer Science © Jalal Kawash 2010

20
o

10/1/2012

10



00 O,
0100 0 0.

0101 Q. 606
011 ¢ 9 0

10 ® ©

11

Peeking into Computer Science © Jalal Kawash 2010

B

A:00, B:0100, C:0101, D:011,
E:10, F: 11
010000011

B A D
No other interpretation

Parsing left to right

(JT's extra: parsing refers to ‘reading’ or
‘breaking into meaningful portions’)

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012

11



10/1/2012

A:00, B:0100, C:0101, D:011,
E:10, F: 11
111010011
FEE D

So How do we generate such codes?

Peeking into Computer Science © Jalal Kawash 2010

Build a binary tree
The characters in a file are the leaves

The most frequent characters should be
closer to the root, generating shorter
codes

Assign the codes, based on this tree

Peeking into Computer Science © Jalal Kawash 2010

12



e
|

1. Assign to each symbol its weight
(frequency)

28 6 4 20 35 7

Each of these is a tree of size onel!

Huffman's Coding - Step 1

Peeking into Computer Science © Jalal Kawash 2010

25

\

2. Choose two trees that have the
minimum weights
Replace these two trees with a new tree with new root

o Make the tree with the smaller weight a right child

o The weight of the new tree is the sum of old weights
(JT: next slide)

28 6 4 20 35 7
New tree

New tree weight 6+4 = 10

Huffman's Coding - Step 2

Peeking into Computer Science © Jalal Kawash 2010

26

10/1/2012

13



e
|

2. Choose two trees that have the
minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
The weight of the new tree is the sum of old weights

20 35 7

28
10
Huffman's Coding - Step 2
Peeking into Computer Science © Jalal Kawash 2010

27

i
|

» Repeat Step 2 until we have a single tree

28 35 7

10 20

Huffman's Coding - Repeat

Peeking into Computer Science © Jalal Kawash 2010

28

10/1/2012

14



2. Choose two trees that have the minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
° The weight of the new tree is the sum of old weights

28 10 20 35 7

iStep 2 Again

‘ Peeking into Computer Science © Jalal Kawash 2010 29
2. Choose two trees that have the minimum weights
Replace these two trees with a new tree with new root
Make the tree with the smaller weight a right child
o The weight of the new tree is the sum of old weights
28 10 20 35 7
New tree weight 10+7 = 17
‘ Peeking into Computer Science © Jalal Kawash 2010 30

10/1/2012

15



|

28

Peeking into Computer Science

20

© Jalal Kawash 2010

35

31

=
|

28 20

Step 2 Again

Peeking into Computer Science

© Jalal Kawash 2010

0008\/:\'%

32

10/1/2012

16



28 20 17

35

‘ Peeking into Computer Science © Jalal Kawash 2010 33
O @O, O,
28 20 35
-_ Weight is 20+17 = 37
| 34

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012

17



o~

28

Weight is 20+17 = 37

k Peeking into Computer Science © Jalal Kawash 2010

35

35 63 28 37
-_ Weight is 35+28 = 63
L Peeking into Computer Science © Jalal Kawash 2010 36

10/1/2012

18



10/1/2012

&)
o

63
L Peeking into Computer Science © Jalal Kawash 2010 37 y
) &
37
t Peeking into Computer Science © Jalal Kawash 2010 381

19



10/1/2012

e
|

Peeking into Computer Science © Jalal Kawash 2010 39 J
3. Label left edges with 0 and right
edges with 1
iStep 3
t Peeking into Computer Science © Jalal Kawash 2010 401

20



i
|

* Read the labels on the path from the
root to each leaf, this is its code

41

Peeking into Computer Science © Jalal Kawash 2010

|
\

+ A's code is 01

Peeking into Computer Science © Jalal Kawash 2010 424

10/1/2012

21



A\

» A’'s code is 01
» C’sis 1100
»+S’sis 00
*E’sis 10
+D’'sis1101
°I'sis 111

Peeking into Computer Science

© Jalal Kawash 2010

43

L

- 35% are S
*« 28% are A
« 20% are E
« 7% arel
* 6% are C
* 4% are D

' More Frequent Characters have
-shorter codes

Peeking into Computer Science

© Jalal Kawash 2010

44

10/1/2012

22



If we use this coding, what is the size of the file?
350 S’s (35% of 1000) require 700 bits (2 bits
for each S)

280 A’s require 560 bits

200 E's require 400 bits

70 I's require 210 bits

60 C’'s require 240 bits

40 D’s require 160 bits

Total is 2270 bits

Recall that with fixed codes, the size is 3000 bits
Compressed file size is about 76% of original
size

Peeking into Computer Science © Jalal Kawash 2010

1925-1999

US Electrical Engineer
Contributions in coding theory, signal
design for radar and communications, and
logic circuits

He wrote his coding algorithm as a
graduate students at MIT

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012

23



Even though coding gave C and D codes
of length 4 (compared to 3 in fixed
coding), it was beneficial

No code generated by Huffman’s method
can be a prefix of another code

Many compression tools use a
combination of different coding methods,
Huffman’s is among them

Peeking into Computer Science © Jalal Kawash 2010

10/1/2012

24



