
Programming: Repetition

James Tam

Loops In Python

In this section of notes you will learn how to
rerun parts of your program without having to
duplicate the code.

James Tam

Application Of Loops In Actual Software

Re-running the entire program

Play
again? Re-running specific parts of the program

Programming: Repetition

James Tam

Basic Structure Of Loops

Whether or not a part of a program repeats is determined by a
loop control (typically just a variable).

• Initialize the control to the starting value
• Testing the control against a stopping condition (Boolean expression)
• Executing the body of the loop (the part to be repeated)
• Update the value of the control

James Tam

Types Of Loops

1.Pre-test loops
- Check the stopping condition before executing the body of the loop.
- The loop executes zero or more times.

2.Post-test loops
- Checking the stopping condition after executing the body of the loop.
- The loop executes one or more times.

Programming: Repetition

James Tam

Pre-Test Loops

1. Initialize loop control
2. Check if the stopping

condition has been met
a. If it’s been met then the loop

ends
b. If it hasn’t been met then

proceed to the next step

3. Execute the body of the loop
(the part to be repeated)

4. Update the loop control
5. Go to step 2

Initialize loop control

Execute body

Condition
met?

Update control

After the loop
(done looping)

Yes

No

James Tam

Post-Test Loops (Not Implemented In Python)

1. Initialize loop control
(sometimes not needed
because initialization occurs
when the control is updated)

2. Execute the body of the loop
(the part to be repeated)

3. Update the loop control
4. Check if the stopping

condition has been met
a. If it’s been met then the loop

ends
b. If it hasn’t been met then return

to step 2.

Initialize loop control

Execute body

Update control

No Condition
met?

After the loop
(done looping)

Yes

Programming: Repetition

James Tam

Pre-Test Loops In Python

1. While
2. For

Characteristics:
1. The stopping condition is checked before the body executes.
2. These types of loops execute zero or more times.

James Tam

Post-Loops In Python

•Note: this type of looping construct has not been implemented
with this language.

•But many other languages do implement post test loops.

Characteristics:
- The stopping condition is checked after the body executes.
- These types of loops execute one or more times.

Programming: Repetition

James Tam

The While Loop

•This type of loop can be used if it’s not known in advance how
many times that the loop will repeat (most powerful type of
loop, any other type of loop can be simulated with a while loop).

•Format:
• (Simple condition)

while (Boolean expression):
body

(Compound condition)
while (Boolean expression) Boolean operator (Boolean expression):

body

James Tam

The While Loop (2)

•Program name: while1.py
i = 1
while (i <= 4):

print ("i =", i)
i += 1

print ("Done!“)

Programming: Repetition

James Tam

The While Loop (2)

•Program name: while1.py

i = 1
while (i <= 4):

print ("i =", i)
i = i + 1

print ("Done!“)

1) Initialize control

2) Check condition

3) Execute body

4) Update control

James Tam

Tracing The While Loop

Variable
i

Execution
>python while1.py

Programming: Repetition

James Tam

The For Loop

• Typically used when it is known in advance how many times
that the loop will execute (counting loop).

• Syntax:
for <name of loop control> in <something that can be iterated>:

body

• Program name: for1.py

total = 0;
for i in range (1, 5, 1):
total = total + i
print ("i=", i, " total=", total)

print ("Done!“)

James Tam

• Typically used when it is known in advance how many times
that the loop will execute (counting loop).

• Syntax:
for <name of loop control> in <something that can be iterated>:

body

• Program name: for1.py

total = 0;
for i in range (1, 5, 1):
total = total + i
print ("i=", i, " total=", total)

print ("Done!“)

The For Loop

1) Initialize control
2) Check condition

4) Update control
3) Execute body

Programming: Repetition

James Tam

Tracing The First For Loop Example

Execution
>python for1.py

Variables
i total

James Tam

Counting Down With A For Loop

•Program name: for2.py

for i in range (5, 0, -1):
total = total + i
print ("i = ", i, "\t total = ", total)

print ("Done!“)

Programming: Repetition

James Tam

Tracing The Second For Loop Example

Execution
>python for2.py

Variables
i total

James Tam

Erroneous For Loops

•The logic of the loop is such that the end condition has already
been reached with the start condition.

•Example:
for i in range (5, 0, 1):

total = total + i
print ("i = ", i, "\t total = ", total)

print ("Done!“)

Programming: Repetition

James Tam

Loop Increments Need Not Be Limited To One

•While
i = 0
while (i <= 100):

print ("i =", i)
i = i + 5

print ("Done!“)

•For
for i in range (0, 105, 5):

print ("i =", i)
print ("Done!“)

James Tam

Sentinel Controlled Loops

•The stopping condition for the loop occurs when the
‘sentinel’ value is reached.

•Program name: sum.py

total = 0
temp = 0
while (temp >= 0):

temp = input ("Enter a non-negative integer (negative to end
series):")

temp = int(tem)
if (temp >= 0):

total = total + temp

print ("Sum total of the series:", total)

Programming: Repetition

James Tam

Sentinel Controlled Loops (2)

•Sentinel controlled loops are frequently used in conjunction
with the error checking of input.

•Example:
selection = " "
while selection not in ("a", "A", "r", "R", "m", "M", "q", "Q"):

print "Menu options"
print "(a)dd a new player to the game"
print "(r)emove a player from the game"
print "(m)odify player"
print "(q)uit game"
selection = raw_input ("Enter your selection: ")
if selection not in ("a", "A", "r", "R", "m", "M", "q", "Q"):

print "Please enter one of 'a', 'r', 'm' or 'q'"

James Tam

Recap: What Looping Constructs Are Available In
Python/When To Use Them

Construct When To Use

Pre-test loops You want the stopping condition to be checked before the loop
body is executed (typically used when you want a loop to
execute zero or more times).

• While • The most powerful looping construct: you can write a ‘while-do’ loop
to mimic the behavior of any other type of loop. In general it should
be used when you want a pre-test loop which can be used for most
any arbitrary stopping condition e.g., execute the loop as long as the
user doesn’t enter a negative number.

• For • A ‘counting loop’: You want a simple loop to repeat a certain number
of times.

Post-test:
None in
Python

You want to execute the body of the loop before checking the
stopping condition (typically used to ensure that the body of the
loop will execute at least once). The logic can be simulated in
Python however.

Programming: Repetition

James Tam

User-Friendly Software

•In today’s world it’s not just sufficient to create software that
has implemented a set of operations.

•If the person using the system cannot understand it or has
troubles using common functions then the software or
technology is useless.

•Reference course: If you’re interested in more information:
- http://pages.cpsc.ucalgary.ca/~tamj/2008/481W/index.html

James Tam

Not So Friendly Examples

Programming: Repetition

James Tam

Some Rules For Designing Software

• (The following list comes from Jakob Nielsen’s 10 usability
heuristics from the book “Usability Engineering”

1. Minimize the user’s memory load
2. Be consistent
3. Provide feedback
4. Provide clearly marked exits
5. Deal with errors in a helpful and

positive manner

James Tam

1. Minimize The User’s Memory Load

•Describe required the input format, use examples, provide
default inputs

•Examples:
Example 1:

Example 2:

Programming: Repetition

James Tam

•Consistency of effects
- Same words, commands, actions will always have the same effect in
equivalent situations

- Makes the system more predictable
- Reduces memory load

2. Be Consistent

James Tam

2. Be Consistent

•Consistency of language and graphics
- Same information/controls in same location on all screens / dialog boxes
forms follow boiler plate.

- Same visual appearance across the system (e.g. widgets).

Programming: Repetition

James Tam

2. Be Consistent

James Tam

2. Be Consistent

Programming: Repetition

James Tam

2. Be Consistent
This last option allows
the user to proceed to
the next question.

James Tam

3. Provide Feedback

•What is the program doing?

cancel

Contacting host (10-60 seconds)

Cursor

Progress bar

Random graphic

Programming: Repetition

James Tam

3. Provide Feedback

•What is the program doing?

James Tam

3. Provide Feedback

•The rather unfortunate effect on the (poor) recipient.

Programming: Repetition

James Tam

3. Provide Feedback

•In terms of this course, letting the user know:
- what the program is doing (e.g., opening a file),
- what errors may have occurred (e.g., could not open file),
- and why (e.g., file “input.txt” could not be found)

...is not hard to do and not only provides useful updates with the
state of the program (“Is the program almost finished yet?”) but
also some clues as to how to avoid the error (e.g., make sure that
the input file is in the specified directory).

•At this point your program should at least be able to provide
some rudamentary feedback
- E.g., if a negative value is entered for age then the program can remind the
user what is a valid value (the valid value should likely be shown to the
user as he or she enters the value):

- age = input ("Enter age (0 – 114): ")

James Tam

4. Provide Clearly Marked Exits

•User’s should never feel ‘trapped’ by a program.

How do
I get
out of
this?

Programming: Repetition

James Tam

4. Provide Clearly Marked Exits

•This doesn’t just mean providing an exit from the program
but the ability to ‘exit’ (take back) the current action.
- Universal Undo/Redo

•e.g., <Ctrl>-<Z> and <Ctrl>-<Y>

- Progress indicator & Interrupt
- Length operations

James Tam

4. Provide Clearly Marked Exits

•Restoring defaults
- Getting back original settings

Wing Commander: Privateer 2 © Origin-EA

Programming: Repetition

James Tam

4. Provide Clearly Marked Exits
The user can skip any
question

James Tam

5. Deal With Errors In A Helpful And
Positive Manner

What is “error 15762”?

Error handling
in “The good
‘ole days”

Programming: Repetition

James Tam

Rules Of Thumb For Error Messages

1. Polite and non-intimidating
- Don’t make people feel stupid

– Try again, bonehead!

2. Understandable
- Error 25

3. Specific
- Cannot open this document
- Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system

4. Helpful
- Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system. Open it with “WordPad” instead?

James Tam

Examples Of Bad Error Messages

Microsoft's NT Operating System

Programming: Repetition

James Tam

“HIT ANY KEY TO CONTINUE”

James Tam

Programming: Repetition

James Tam

I Think I’d Rather Deal With The Any Key!!!

Picture courtesy of James Tam: An error message from a Dell desktop computer

James Tam

Solving A Problem Using Loops

•Problem: Write a program that will execute a game:
- The program will randomly generate a number between one and ten.
- The player will be prompted to enter their guess.
- The program will continue the game until the player indicates that they no
longer want to continue.

•Program name: guessingGame.py

Programming: Repetition

James Tam

Guessing Game

guess = 0
answer = 0
choice = "Y"
while choice not in ("q", "Q"):

answer = random.randrange (10) + 1
guess = int(input ("Enter your guess: "))
if (guess == answer):

print ("You guessed correctly!“)
else:

print ("You guessed incorrectly“)
print ("Number was", answer, ", your guess was", guess)
print ("Play again? Enter 'q' to quit, anything else to play again“)
choice = input("Choice: ")
print ()

print ("Exiting game“)

James Tam

Infinite Loops

•Infinite loops never end (the stopping condition is never met).
•They can be caused by logical errors:

- The loop control is never updated (Example 1 – below).
- The updating of the loop control never brings it closer to the stopping
condition (Example 2 – next slide).

•Example 1: infinite1.py
i = 1
while (i <=10):

print ("i = ", i)
i = i + 1

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

Programming: Repetition

James Tam

Infinite Loops (2)

•Example 2: infinite2.py

i = 10
while (i > 0):

print ("i = ", i)
i = i + 1

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Nested Loops

•One loop executes inside of another loop(s).
•Example structure:

Outer loop (runs n times)
Inner loop (runs m times)

Body of inner loop (runs n x m times)

• Program name: nested.py

for i in range (1, 3, 1):
for j in range (1, 4, 1):

print ("i = ", i, " j = ", j)
print ("Done!“)

Programming: Repetition

James Tam

Testing Loops

• Make sure that the loop executes the proper number of times.
• Test conditions:

1) Loop does not run
2) Loop runs exactly once
3) Loop runs exactly ‘n’ times

James Tam

Testing Loops: An Example

sum = 0
i = 1
last = 0

last = input ("Enter the last number in the sequence to sum : ")
while (i <= last):

sum = sum + i
print ("i = ", i)
i = i + 1

print ("sum =", sum)

Programming: Repetition

James Tam

After This Section You Should Now Know

• When and why are loops used in computer programs
• What is the difference between pre-test loops and post-test

loops
• How to trace the execution of pre-test loops
• How to properly write the code for a loop in a program
• Some rules of thumb for interaction design

1. Minimize the user’s memory load
2. Be consistent
3. Provide feedback
4. Provide clearly marked exits
5. Deal with errors in a helpful and

positive manner

• What are nested loops and how do you trace their execution
• How to test loops

