Functions: Redux

A brief discussion of some of the more
advances topics/issues associated with
functions.

Lists Are References: Copying Lists

*Recap (list variables are actually references to a list):
- Assigning using just the name of the list just copies the references not the
data e.g., list1 = list2
- To copy the elements of one list to another a loop is needed to copy each
successive elements.

*Name of the online example: copy.py

list1 = [1,2,3,4]
list2 =[]

foriinrange (0, 4, 1):
list2.append(list1[i])

print list1, list2
list1[1] = 99
print list1, list2

Passing Simple Types As Parameters: Pass By Value

*Passing integers, floats, Booleans as parameters results in a
local copy of the parameter being made in the function.

*This parameter passing mechanism is referred to as pass by
value:
- Mnemonic aid: A copy of the value/data stored in the parameter passed in
is what’s stored in a local variable of the function that was called.
*The local copy will have the same data as the parameter.

*However the local copy is separate from the parameter so it may
change independently from the parameter.

*Alternatively: Changes made to the parameter must be returned
back to the caller in order for the changes to be accessible
outside of the function.

Passing Simple Types As Parameters: Pass By

Value (2)

*Name of the online example: parameter1.py

def fun1(x):
X=x+1

def fun2(x):
X=x+1
return (x)

def main():
x=1
print(x)
fun1(x)
print(x)
x = fun2(x)
print(x)

main ()

Passing Lists As Parameters: Pass By Reference

*Unlike what you’ve seen with parameter passing so far,
modifying a list that’s been passed as a parameter to a function
may modify the original list.

- It all depends upon how the list is accessed in the function.

*When the reference is passed as a parameter to a function a local
reference also refers to the list.
- The local reference can be reassigned to another list e.g., list1 = list2
- OR
- The local reference can be used to change the original list e.g., list1[1]
= list2[12]
*This parameter passing mechanism is referred to as pass by
reference:

- Mnemonic aid: When a parameter is passed by reference there is a
local variable that refers to the original parameter.

Original List Is Changed

*Passing lists into functions is done using a different mechanism

- When a list is passed into the function a local reference variable refers to
the original list.

*Name of the online example: parameter2.py

def fun (list):
list[0] = 99
print (list)

def main ():
list =[1,2,3]
print (list)
fun (list)
print (list)

main ()

Original List Is Unchanged

+If the local reference is assigned to another list then it will
obviously no longer refer to the original list.

+(Effect: changes made via the local reference will change the
local list and not the original that was passed into the function).

*Name of the online example: parameter3.py

def fun (list):
list =[3,2,1]
print(list)

def main ():
list =1[1,2,3]
print(list)
fun(list)
print(list)

main ()

Parameter Passing: One Last Comprehensive
Example

*Name of the online example: parameter4.py

def fun1(list1,list2):
list1 = list2
print("During fun1:" list1,list2)

def fun2(aList):
aList = ["Eric","Cart"]
print("During fun2:", aList)

Parameter Passing: One Last Comprehensive
Example (2)

def fun3(list1,list2):
list1[0] = list2[0]
list1[1] = list2[1]
list1[2] = list2[2]
print("During fun3:", list1,list2)
return (list1)

def fun4(list1,list2):
list1[0] = list2[0]
list1[1] = list2[1]
list1[2] = list2[2]
print("During fun4:", list1,list2)

Parameter Passing: One Last Comprehensive

Example (3)
def main():
print("Changes made in function don't persist (example with parameters)")
list1 =[1,2,3]
list2 = [3,2,1]

print("Before fun1:", list1,list2)
fun1(list1,list2)

print("After fun1:", list1,list2)
print()

print("Changes made in function don't persist (example with local variable)")
list1 =[1,2,3]

print("Before fun2:", list1)

fun2(list1)

print("After fun2:", list1)

print()

Parameter Passing: One Last Comprehensive

Example (4)
print("Changes made to original list using return value")
list1 =[1,2,3]
list2 = [3,2,1]

print("Before fun3: ", list1,list2)
list1 = fun3(list1,list2)
print("After fun3:", list1,list2)
print()

print("Changes made to original list using reference parameters")
list1 =1[1,2,3]

list2 = [3,2,1]

print("Before fun4:", list1,list2)

fun4(list1,list2)

print("After fun4:", list1,list2)

main()

Where To Declare Your Variables

*In a program with many functions it must be determined in
which function should a variable be created.
-Main calls funl, fun2, fun3

l funs ‘ l fun6 ‘

*Rule of thumb:

- To minimize the potential for side-effects: Do not declare a variable any
higher in the hierarchy than needed (as low as possible).

*Simple case:

- If a function is only needed in a bottom level function (funl,2,4,6) then it
should be declared as local to that function.

Where To Declare Your Variables (2)

*Other cases:
-If a variable must be passed as a parameter into a function then the variable
must be declared in the caller of that function.
- Example: fun2 calls fun4

-If a variable in fun2 must be passed as a parameter to fun4, then that

variable must be created in fun2 (higher if that parameter is passed into
fun2).

Error! OK:
def fun2(): def fun2():
fun4(num) num = 12
fun4(num)
def fun4(num):
print(num) def fun4(num):
print(num)

Example: Where To Declare Your Variables

-Amount?
*Quarters?
*Dimes?
*Pennies?
sAmount left?

| Change program {main} |

inputAmount computeChange | | outputCoins

ComputeQuarters | |ComputeDimes | |ComputePennies

Example: Where To Declare Your Variables (2)

*Amount?
*Quarters?
| Change program {main}| -Dimes?

*Pennies?

*AmountLeft?

inputAmount

| outputCoins

ComputeQuarters | |ComputeDimes | |ComputePennies

After This Section You Should Now Know

*The difference between pass by reference and pass by value

*When a reference parameter does and does not change the
original data

*Some guidelines for where you should declare your variables in
a hierarchy of functions that

