
Programming: File input and output

James Tam

Introduction To Files In
Python

In this section of notes you will learn
how to read from and write to files in
your programs.

James Tam

Why Bother With Files?

•Many reasons:
- Too much information to input all at once
- The information must be persistent (RAM is volatile)
- Data entry of information is easier via a specialized program (text editor,
word processor, spreadsheet, database) rather than through the computer
program that you write.

- Etc.

Programming: File input and output

James Tam

What You Need In Order To Read
Information From A File

1. Open the file and associate the file with a file variable
2. A command to read the information
3. A command to close the file

James Tam

1. Opening Files

Prepares the file for reading:
A. Links the file variable with the physical file (references to the file

variable are references to the physical file).
B. Positions the file pointer at the start of the file.
C. The file may be ‘locked’

Format:1

<file variable> = open (<file name>, “r”)

Example:
(Constant file name)
inputFile = open ("data.txt ", "r")

OR
(Variable file name: entered by user at runtime)
filename = input ("Enter name of input file: ")
inputFile = open (filename, "r")

1 Assumes that the file is in the same directory/folder as the Python program.

Programming: File input and output

James Tam

B. Positioning The File Pointer

A

B

C

B

B

:

letters.txt

James Tam

2. Reading Information From Files

Typically reading is done within the body of a loop
Format:

for <variable to store a string> in <name of file variable>:
<Do something with the string read from file>

Example:
for line in inputFile:

print(line)

Programming: File input and output

James Tam

Closing The File

•Although a file is automatically closed when your program ends
it is still a good idea to explicitly close your file as soon as the
program is done with it.

•Format:
<name of file variable>.<close>()

•Example:
inputFile.close()

James Tam

Reading From Files: Putting It All Together

Name of the online example: grades1.py

inputFileName = input ("Enter name of input file: ")
inputFile = open (inputFileName, "r")
print("Opening file", inputFileName, " for reading.")

for line in inputFile:
sys.stdout.write(line)

inputFile.close()
print("Completed reading of file", inputFileName)

Programming: File input and output

James Tam

What You Need To Write Information To A File

1. Open the file and associate the file with a file variable (file is
“locked” for writing).

2. A command to write the information
3. (A command to close the file)

James Tam

1. Opening The File

Format:
<name of file variable> = open (<file name>, “w”)

Example:
(Constant file name)
outputFile = open (“gpa.txt”, "w")

(Variable file name: entered by user at runtime)
outputFileName = input ("Enter the name of the output file to record the

GPA's to: ")
outputFile = open (outputFileName, "w")

Programming: File input and output

James Tam

3. Writing To A File

Format:
outputFile.write (temp)

Example:
Assume that temp contains a string of characters.
outputFile.write (temp)

James Tam

Writing To A File: Putting It All Together

•Name of the online example: grades2.py

inputFileName = input ("Enter the name of input file to read the grades from: ")
outputFileName = input ("Enter the name of the output file to record the GPA's
to: ")

inputFile = open (inputFileName, "r")
outputFile = open (outputFileName, "w")

print("Opening file", inputFileName, " for reading.")
print("Opening file", outputFileName, " for writing.")

Programming: File input and output

James Tam

Writing To A File: Putting It All Together (2)

gpa = 0
for line in inputFile:

if (line[0] == "A"):
gpa = 4

elif (line[0] == "B"):
gpa = 3

elif (line[0] == "C"):
gpa = 2

elif (line[0] == "D"):
gpa = 1

elif (line[0] == "F"):
gpa = 0

else:
gpa = -1

James Tam

Writing To A File: Putting It All Together (3)

(Body of for-loop continued)
temp = str (gpa)
temp = temp + '\n'
print (line[0], '\t', gpa)

outputFile.write (temp)

Finished writing to file, provide feedback to user and close file.
inputFile.close ()
outputFile.close ()
print ("Completed reading of file", inputFileName)
print ("Completed writing to file", outputFileName)

Programming: File input and output

James Tam

Another Example Reading From A File Into A
String: Access Individual Characters

•Name of the online example: file_list.py

inputFile = open ("input.txt", "r")

i = 1
for line in inputFile:

print("Line %d vowels:" %i)
for ch in line:

if (ch in ('A','a','E','e','I','i','O','o','U','u')):
sys.stdout.write(ch)

i = i + 1
print()

print ("Completed reading of file input.txt")
inputFile.close()

James Tam

Building An Arbitrary Sized List By
Reading From File

•Name of the online example: file_list2.py

inputFile = open ("input2.txt", "r")
myList = []
for line in inputFile:

myList.append(line)
inputFile.close()

Programming: File input and output

James Tam

Building An Arbitrary Sized List By
Reading From File (2)

row = 0
for line in myList:

if (row < 10):
temp = str(row) + line
sys.stdout.write(temp)

else:
temp = (row - 10) + ord('A')
ch = chr(temp)
temp = ch + line
sys.stdout.write(temp)

row = row + 1

James Tam

__str__()

•A special method that is automatically called when an object is
passed into the ‘print’ function.

•Because print takes a string or strings as parameters the __str__()
method must return a string (print calls __str__)
- Normally the string returned contains information about the attributes.

•Format:
def __str__(self, <other parameters>):

: : :
return <string>

•Example1:
class Foo:

x = 12
def __str__(self):

return(str(self.x))

1 Full example to follow.

Programming: File input and output

James Tam

Reading File Information Into A List Of Objects

•Name of the online example: client_tracker.py

NET_WORTH_CUTOFF = 1000000

class Client:

def __init__(self,name,worth):
self.name = name
self.worth = worth

def __str__(self):
temp = "Client name: " + self.name
temp = temp + "\n"
temp = temp + "Net worth $" + str(self.worth)
return temp

James Tam

Reading File Information Into A List Of Objects (2)

class SpecialClient:

WORTH_TO_HAPPINESS_RATIO = 0.0001

def __init__(self,name,worth):
self.name = name
self.worth = worth

Amount of money we will spend on the client to keep his/her
business (i.e., we will spend more on richer clients).
self.expenseAccount = int(self.worth * \

self.WORTH_TO_HAPPINESS_RATIO)

def __str__(self):
temp = "Client name: " + self.name
temp = temp + "\n"
temp = temp + "Net worth $" + str(self.worth)
temp = temp + "\n"
temp = temp + "Client budget $" + str(self.expenseAccount)
return temp

Programming: File input and output

James Tam

Reading File Information Into A List Of Objects (3)

def readClientInformationFromFile():
clients = []
inputFile = open("clients.txt", "r")
for line in inputFile:

name,worth = line.split('$')
worth = int(worth)
if (worth >= NET_WORTH_CUTOFF):

aClient = SpecialClient(name,worth)
else:

aClient = Client(name,worth)
clients.append(aClient)

return clients

James Tam

Reading File Information Into A List Of Objects (4)

def display(clients):
MAX = len(clients)
print()
print("CLIENT LIST")
print("-----------")
for i in range (0,MAX,1):

print("Client #%d" %(i+1))
print(clients[i])
print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

def main():
clients = readClientInformationFromFile()
display(clients)

main()

Programming: File input and output

James Tam

Error Handling With Exceptions

•Exceptions are used to deal with extraordinary errors.
•Typically these are fatal runtime errors.
•Example: trying to open an non-existent file

James Tam

Exceptions: Example

•Name of the online example: file_exception.py

inputFileOK = False
while (inputFileOK == False):

try:
inputFileName = input ("Enter name of input file: ")
inputFile = open (inputFileName, "r")

except IOError:
print ("File", inputFileName, "could not be opened")

else:
print ("Opening file", inputFileName, " for reading.")
inputFileOK = True

for line in inputFile:
sys.stdout.write(line)

print ("Completed reading of file", inputFileName)
inputFile.close()
print ("Closed file", inputFileName)

Programming: File input and output

James Tam

Exceptions: Example (2)

Body of the while loop (continued)
finally:

if (inputFileOK == True):
print ("Successfully read information from file",

inputFileName)
else:

print ("Unsuccessfully attempted to read information
from file",

inputFileName)

James Tam

You Should Now Know

•How to open a file for reading
•How to open a file a file for writing
•The details of how information is read from and written to a file
•How to close a file and why it is good practice to do this
explicitly

•How to read from a file of arbitrary size
•How to build an arbitrary sized list by reading the information
from a file

•How exceptions can be used in conjunction with file input

