
Programming: Composite types (lists, strings, tuples,
classes) 1

Composite Types

You will learn in this section of notes
how to create single and generic

James Tam

how to create single and generic
instances of non-homogeneous
composite types that are used for
different scenarios.

Types Of Variables

Python
variables

1. Simple
(atomic)

b l

2. Aggregate
(composite)

James Tam

integer boolean float

Strings Lists Tuples Dictionaries

Programming: Composite types (lists, strings, tuples,
classes) 2

Small Example Programs Using Strings

•They can be found online under the following names
- string1.py (passing a whole string to a function)
- string2.py (indexing the parts of a string)
- string3 py (demonstrating the immutability of strings)- string3.py (demonstrating the immutability of strings)
- string4.py (string slicing)
- string5.py (strings as sets, test for inclusion using ‘in’)
- string6.py (strings that are repetitive sequence)
- string7.py (using string functions: converting string input to numerical)
- string8.py (using string functions that return modified versions of a string)
- string9.py (string search functions)

•All the examples will be located in UNIX under:

James Tam

All the examples will be located in UNIX under:
/home/231/examples/composites

•Also they can be found by looking at the course website under
the URL:
- http://pages.cpsc.ucalgary.ca/~tamj/231/examples/composites

String

•Strings are just a series of characters (e.g., alpha, numeric,
punctuation etc.)

•A string can be treated as one entity.
def fun (aString):

print aString

MAIN
aString = “Goodbye cruel world!”
fun (aString)

•Or the individual elements (characters) can be accessed via an
index.

James Tam

index.
- Note: A string with ‘n’ elements has an index from 0 to (n-1)
MAIN
aString = "hello"
print (aString[1])
print (aString[4])

Programming: Composite types (lists, strings, tuples,
classes) 3

Strings Are Immutable

•Even though it may look a string can change they actually
cannot be edited.
MAIN
aString = "good-bye"aString good bye
print (aString)
aString = "hello"
print (aString)
aString[0] = "G“ # Error

James Tam

Substring Operations

•Sometimes you may wish to extract out a portion of a string.
- E.g., Extract out “James” from “James T. Kirk, Captain”

•This operation is referred to as a ‘substring’ operation in many
i lprogramming languages.

•There are two implementations of the substring operation in
Python:
- String slicing
- String splitting

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 4

String Slicing

•Slicing a string will return a portion of a string based on the
indices provided

•The index can indicate the start and end point of the substring.
•Format:

string_name [start_index : end_index]

•Example:
aString = "abcdefghij"
print (aString)
temp = aString [2:5]

i t (t)

James Tam

print (temp)
temp = aString [:5]
print (temp)
temp = aString [7:]
print (temp)

String Splitting

•Divide a string into portions with a particular character
determining where the split occurs.
- The string “The cat in the hat” could be split into individual words
- “The” “cat” “in” “the” “hat”

•Format:
string_name.split (‘’<character used in the split’)

•Examples:
aString = "man who smiles"
one, two, three = aString.split() # Default character is a space
print (one)

James Tam

p ()
print (two)
print (three)
aString = "Tam, James"
last, first = aString.split(',')
print (first, last)

Programming: Composite types (lists, strings, tuples,
classes) 5

Strings Can Be Conceptualized As Sets

•The ‘in’ and ‘not in’ operations can be performed on a string.
•Branching

passwords = "aaa abc password xxx"
d i t ("P d ")password = input ("Password: ")

if password in passwords:
print "You entered an existing password, enter a new one“

•Looping (iterating through the elements)
sentence = "hihi there!"
for temp in sentence:

sys.stdout.write(temp) import sys

James Tam

Use of the write function requires the ‘import’ of the library sys: allows for more precise
formatting than the standard print

Rest of your program

Repetitive Strings

•A string with a number of repeated characters can be initialized
in a number of ways.
aString = “xxxxxxxx”
aString = “hi!” * 5aString hi! 5

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 6

String Testing Functions1

•These functions test a string to see if a given condition has
been met and return either “True” or “False” (Boolean).

•Format:
string_name.function_name ()

James Tam1 These functions will return false if the string is empty (less than one character).

String Testing Functions (2)

Boolean
Function

Description

isalpha () Only true if the string consists only of alphabetic
characterscharacters.

isdigit () Only returns true if the string consists only of digits.

isalnum () Only returns true if the string is composed only of
alphabetic characters or numeric digits.

islower () Only returns true if the alphabetic characters in the string

James Tam

y p g
are all lower case.

isspace () Only returns true if string consists only of whitespace
characters (“ “, “\n”, “\t”)

isupper () Only returns true if the alphabetic characters in the string
are all upper case.

Programming: Composite types (lists, strings, tuples,
classes) 7

Applying A String Testing Function

MAIN
ok = False
while (ok == False):

temp = input ("Enter numbers not characters: ")temp = input (Enter numbers not characters:)
ok = temp.isdigit()
if (ok == False):

print(temp, "is not a number“)
else:

print("done“)
num = int (temp)
num = num + num

James Tam

num = num + num
print(num)

Functions That Modify Strings

•These functions return a modified version of an existing string (leaves the
original string intact).

Function Description
lower () Returns a copy of the string with all the alpha characters as

lower case (non-alpha characters are unaffected).
upper () Returns a copy of the string with all the alpha characters as

upper case (non-alpha characters are unaffected).
strip () Returns a copy of the string with all leading and trailing

whitespace characters removed.
lstrip () Returns a copy of the string with all leading (left)

James Tam

whitespace characters removed.
rstrip () Returns a copy of the string with all trailing (right)

whitespace characters removed.
lstrip (char) Returns a copy of the string with all leading instances of the

character parameter removed.
rstrip (char) Returns a copy of the string with all trailing instances of the

character parameter removed.

Programming: Composite types (lists, strings, tuples,
classes) 8

Example Uses Of Functions That Modify Strings

aString = "talk1! AbouT"
print(aString)
aString = aString.upper ()
print(aString)print(aString)

aString = "xxhello there"
print(aString)
aString = aString.lstrip ('x')
print(aString)
aString = "xxhellx thxrx"
aString = aString lstrip ('x')

James Tam

aString = aString.lstrip (x)
print(aString)

Functions To Search Strings

Function Description

d ith (b t i) A b i i h d h f iendswith (substring) A substring is the parameter and the function returns
true only if the string ends with the substring.

startswith (substring) A substring is the parameter and the function returns
true only if the string starts with the substring.

find (substring) A substring is the parameter and the function returns the

James Tam

d (subst g) A substring is the parameter and the function returns the
lowest index in the string where the substring is found
(or -1 if the substring was not found).

replace (oldstring,
newstring)

The function returns a copy of the string with all
instances of ‘oldstring’ replace by ‘newstring’

Programming: Composite types (lists, strings, tuples,
classes) 9

Examples Of Functions To Search Strings

temp = input ("Enter a sentence: ")
if not ((temp.endswith('.')) or (temp.endswith('!')) or (temp.endswith ('?'))):

print("Not a sentence“)

temp = "XXabcXabcabc"
index = temp.find("abc")
print(index)

temp = temp.replace("abc", "Abc")
print(temp)

James Tam

List

•In many programming languages a list is implemented as an
array.

•Python lists have many of the characteristics of the arrays in
other programming languages but they also have many other
features.

•This first section will talk about the features of lists that are
largely common to arrays.

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 10

Example Problem

•Write a program that will track the percentage grades for a class
of students. The program should allow the user to enter the
grade for each student. Then it will display the grades for the
whole class along with the averagewhole class along with the average.

James Tam

Why Bother With Composite Types?

•Name of the example program: classList1.py

CLASS_SIZE = 5

stu1 = float(input ("Enter grade for student no. 1: "))
stu2 = float(input ("Enter grade for student no. 2: "))
stu3 = float(input("Enter grade for student no. 3: "))
stu4 = float(input("Enter grade for student no. 4: "))
stu5 = float(input("Enter grade for student no. 5: "))

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 11

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES“)
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

James Tam

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print() NO!print("GRADES“)
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

NO!

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 12

What Were The Problems With
The Previous Approach?

•Redundant statements.
•Yet a loop could not be easily employed given the types of
variables that you have seen so far.

James Tam

What’s Needed

•A composite variable that is a collection of another type.
- The composite variable can be manipulated and passed throughout the

program as a single entity.
- At the same time each element can be accessed individually.y

•What’s needed…a list!

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 13

Creating A List (No Looping)

•This step is mandatory in order to allocate memory for the list.

•Omitting this step (or the equivalent) will result in a syntax
errorerror.

•Format:
<list_name> = [<value 1>, <value 2>, ... <value n>]

Example:
percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

letters = [' A' 'B' 'A']

James Tam

letters = [' A', 'B', 'A']

names = ["James Tam", "Stacey Walls", "Jamie Smyth"]

Creating A List (With Loops)

• Step 1: Create a variable that is a reference to the list
• Format:

<list name> = []

• Example:
classGrades = []

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 14

Creating A List (With Loops: 2)

•Step 2: Initialize the list with the elements
•General format:

- Within the body of a loop create each element and then append the new
l t th d f th li telement on the end of the list.

•Example:
for i in range (0, 5, 1):

classGrades.append (0)

James Tam

• To manipulate an list you need to first indicate which list is being accessed
- Done via the name of the list e.g., “print (classGrades)”

Accessing Data In The List

classGrades [0]

• If you are accessing a single element, you need to indicate which element that you
wish to access.
- Done via the list index e.g., “print (classGrades[1])”

[1]

[2]
[3]
[4]

Using only the name of the
list refers to the whole list

James Tam

classGrades [0]

[1]

[2]
[3]
[4]

Use the list name and a
subscript (the ‘index’) refers
to a single element

Programming: Composite types (lists, strings, tuples,
classes) 15

Revised Version Using A List

•Name of the example program: classList2.py

CLASS_SIZE = 5

def read(classGrades):
total = 0

for i in range (0, CLASS_SIZE, 1):
Because list indices start at zero add one to the student number.
temp = i + 1

James Tam

print("Enter grade for student no.", temp, ":")
classGrades[i] = float(input (">"))
total = total + classGrades[i]
average = total / CLASS_SIZE

return (classGrades, average)

Revised Version Using A List (2)

def display(classGrades, average):
print()
print("GRADES")
print("The average grade is %.2f%%" %average)
for i in range (0 CLASS SIZE 1):for i in range (0, CLASS_SIZE, 1):

Because array indices start at zero add one to the student number.
temp = i + 1
print("Student No. %d: %.2f%%" %(temp,classGrades[i]))

def main():
classGrades = []
for i in range (0, CLASS_SIZE, 1):

classGrades.append(0)

James Tam

classGrades.append(0)

classGrades, average = read (classGrades)
display (classGrades, average)

main ()

Programming: Composite types (lists, strings, tuples,
classes) 16

One Part Of The Previous Example Was Unneeded

def read(classGrades):

: : When list is passed
as a parameter

return (classGrades, average)

as a parameter

Returning the list is likely not
needed

James TamMore details on ‘why’ coming up later in the course!

Printing Lists

•Although the previous example stepped through each element of
the list in order to display it’s contents onscreen if you want to
quickly check the contents (and not worry about details like
formatting) then you can simply use a print statement as youformatting) then you can simply use a print statement as you
would with any other variable.

Example:
print (classGrades)

Output:

James Tam

Output:
[10, 20, 30, 40, 50]

Programming: Composite types (lists, strings, tuples,
classes) 17

Take Care Not To Exceed The Bounds Of The List

RAM
[0]
[1]
[2]

list OK
OK
OK

list = [0, 1, 2, 3]
for i in range (0, 4, 1):

i (li [i]) [2]
[3]

OK
OK
???

print (list [i])

print ()
print (list [4]) ???

James Tam

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100

•The value in the constant controls traversals of the list•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):
print (myList [i])

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 18

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100000

•The value in the constant controls traversals of the list•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):
print (myList [i])

James Tam

Copying Lists

•A list variable is not actually a list!
•Instead that list variable is actually a reference to the list.
•(This is important because if you use the assignment operator to(This is important because if you use the assignment operator to
copy from list to another you will end up with only one list).

•Name of the example program: copy_list1.py

list1 = [1,2]
list2 = [2,1]
print (list1, list2)

li t1 li t2

James Tam

list1 = list2
print (list1, list2)

list1[0] = 99
print (list1, list2)

Programming: Composite types (lists, strings, tuples,
classes) 19

Copying Lists (2)

•To copy the elements of one list to another a loop is needed to
copy each successive elements.

•Name of the example program: copy_list2.py

list1 = [1,2,3,4]
list2 = []

for i in range (0, 4, 1):
list2.append(list1[i])

print list1, list2
list1[1] = 99

James Tam

list1[1] = 99
print (list1, list2)

When To Use Lists Of Different Dimensions

•Determined by the data – the number of categories of information
determines the number of dimensions to use.

• Examples:
•(1D list)•(1D list)

-Tracking grades for a class
-Each cell contains the grade for a student i.e., grades[i]
-There is one dimension that specifies which student’s grades are being accessed

One dimension (which student)

James Tam

•(2D list)
-Expanded grades program
-Again there is one dimension that specifies which student’s grades are being
accessed

-The other dimension can be used to specify the lecture section

Programming: Composite types (lists, strings, tuples,
classes) 20

When To Use Lists Of Different Dimensions (2)

•(2D list continued)

Student

Lecture First Second Thirdsection First
student

Second
student

Third
student

…

L01

L02

L03

L04

James Tam

L05

:

L0N

When To Use Lists Of Different Dimensions (3)

•(2D list continued)
•Notice that each row is merely a 1D list
•(A 2D list is a list containing rows of 1D lists)

Important:

List elements are
specified in the order of

L02

L01

L03

[0] [1] [2] [3]
[0]

[1]

[2]

Columns specified in the order of
[row] [column]

James Tam

L07

L04[3]

[4]

[5]

[6]

Rows

•L06

•L05

Programming: Composite types (lists, strings, tuples,
classes) 21

Creating And Initializing A Multi-Dimensional List
In Python

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],
Ro s: : :

: : :
[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

James Tam

Creating And Initializing A Multi-Dimensional List
In Python (2)

Name of the example program: display_list.py
matrix = [[0, 0, 0],

[1, 1, 1],
[2 2 2][2, 2, 2],
[3, 3, 3]]

for r in range (0, 4, 1):
print (matrix[r])

for r in range (0,4, 1):
for c in range (0,3,1):

James Tam

sys.stdout.write(str(matrix[r][c]))
print()

Programming: Composite types (lists, strings, tuples,
classes) 22

Creating And Initializing A Multi-Dimensional List
In Python (3)

General structure (Using loops):
•Create a variable that refers to a 1D list. The outer loop traverses the rows.
Each iteration of the outer loop creates a new 1D list. Then the inner loop
traverses the columns of the newly created 1D list creating and initializingtraverses the columns of the newly created 1D list creating and initializing
each element in a fashion similar to how a single 1D list was created and
initialized.

•Example (Using loops):
aGrid = [] # Create a reference to the list
for r in range (0, 3, 1): # Outer loop runs once for each row

aGrid.append ([]) # Create a row (a 1D list)

James Tam

for c in range (0, 3, 1): # Inner loop runs once for each column
aGrid[r].append (" ") # Create and initialize each element (1D list)

Example 2D List Program: A Character-Based Grid

•Name of the example program: simple_grid.py

import sys

aGrid = []
aGrid = []
for r in range (0,2,1):

aGrid.append ([])
for c in range (0,3,1):

aGrid[r].append (str(r+c))

James Tam

for r in range (0,2,1):
for c in range (0,3,1):

sys.stdout.write(str(aGrid[r][c]))
print()

Programming: Composite types (lists, strings, tuples,
classes) 23

List Elements Need Not Store The Same Data Type

•What if different types of information needs to be tracked in the
list?

Example, storing information
about a client:
•Name

•Phone number

•Email address

…series of characters

…numerical or character

…series of characters

James Tam

•Total purchases made …numerical or character

Non-Homogeneous Lists

•If just a few clients need to be tracked then a simple list can be
employed:
firstClient = ["James Tam”

"(403)210 9455"(403)210-9455 ,
"tamj@cpsc.ucalgary.ca",

0]

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 24

Non-Homogeneous Lists (2)

•(Or as a small example)
def display (firstClient):

print "DISPLAYING CLIENT INFORMATION"
i t " "print "-----------------------------"

for i in range (0, 4, 1):
print firstClient [i]

MAIN
firstClient = ["James Tam”

"(403)210-9455",

James Tam

"tamj@cpsc.ucalgary.ca",
0]

display (firstClient)

Non-Homogeneous Lists (3)

•If only a few instances of the composite type (e.g., “Clients”)
need to be created then multiple instances single lists can be
employed.
firstClient ["James Tam”firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Griffin”
"(708)123-4567",

James Tam

"griffinp@familyguy.com",
100]

Programming: Composite types (lists, strings, tuples,
classes) 25

Small Example Programs Using Lists

•Names of the example programs:
- list1.py (concatenation and repetition)
- list2.py (membership)

James Tam

Some List Operations

Operation name Operator Description

Indexing [] Access a list element

Concatenation + Combine lists

Repetition * Concatenate a repeated
number of times

Membership in Query whether an item
is a member of a list

M b hi t i Q h h i

James Tam

Membership not in Query whether an item
is not a member of a list

Length len Return the number of
items in a list

Slicing [:] Extract a part of a list

Programming: Composite types (lists, strings, tuples,
classes) 26

Examples: Concatenation And Repetition

list1 = [1, 2.0, "foo“]
list2 = [[1,2,3], "bar"]
print list1
print list2print list2
list1 = list1 * 2
print list1
list3 = list1 + list2
print list3

James Tam

Examples: Membership

print("Example 1: ")
recall_list = ["vpn123", "NCC-75633", "gst7"]
item = input ("Product code to check for recall: ")
if item in recall list:if item in recall_list:

print("Your product was on the recall list, take it back")
else:

print("You're safe")
print()

print("Example 2:")
days = ["Sun" "Mon" "Tue" "Wed" "Thur" "Fri" "Sat"]

James Tam

days = [Sun , Mon , Tue , Wed , Thur , Fri , Sat]
for temp in days:

print(temp)

Programming: Composite types (lists, strings, tuples,
classes) 27

Some Useful List Operations

Operation Format Description

Append list_name.append (item) Adds a new item to the pp _ pp ()
end of the list

Insert list_name.insert (i, item) Inserts a new item at
index ‘i’

Sort list_name.sort () Sorts from smallest to
largest

James Tam

Reverse list_name.reverse () Reverses the current
order of the list

Count list_name.count (item) Counts and returns the
number of occurrences
of the item

Tuples

•Much like a list, a tuple is a composite type whose elements can
consist of any other type.

•Tuples support many of the same operators as lists such as
indexing.

•However tuples are immutable.
•Tuples are used to store data that should not change.

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 28

Creating Tuples

•Format:
tuple_name = (value1, value2...valuen)

E l•Example:
tup = (1,2,"foo",0.3)

James Tam

A Small Example Using Tuples

•Name of the online example: tuples1.py

tup = (1,2,"foo",0.3)
print (tup)
print (tup[2])
tup[2] = "bar" Error:

“TypeError: object does not support item assignment”

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 29

Function Return Values

•Although it appears that functions in Python can return multiple
values they are in fact consistent with how functions are defined
in other programming languages.

•Functions can either return zero or exactly one value only.
•Specifying the return value with brackets merely returns one
tuple back to the caller.

def fun ():
return (1,2,3) Returns: A tuple with three elements

James Tam

def fun (num):
if (num > 0):

print “pos”
return

elif (num < 0):
print “neg”
return

Nothing is returned back to the caller

Dictionaries

•A special purpose composite type that maps keys (which can be
any immutable type) to a value (like lists it can be any value).

•The keys can be used to later lookup information about the
value e.g., looking up the definition for a word in a dictionary.

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 30

Small Example Programs Using Dictionaries

•The names of the online examples:
- dictionary1.py (creating dictionaries)
- dictionary2.py (deleting entries from the dictionary, checking for
membership)p)

James Tam

Creating A Small Dictionary

•Format (defining the entire dictionary all at once)
<dictionary_name> = {key1:value1, key2:value2...keyn:valuen}

•Example: (defining the entire dictionary all at once)•Example: (defining the entire dictionary all at once)
dict = {"one":"yut", "two":"yee", "three":"saam"}

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 31

Creating A Large Dictionary

•Format:
- dictionary_name = {}
- dictionary_name [key1] = value1

- dictionary name [key2] = value2- dictionary_name [key] = value
- : : :
- dictionary_name [keyn] = valuen

•Example:
dict = {}
dict ["word1"] = ["Dictionary definition for word1"]
dict ["word2"] = ["Dictionary definition for word2"]

James Tam

Examples Of Creating Dictionaries

dict = {}
dict ["word1"] = ["Dictionary definition for word1"]
dict ["word2"] = ["Dictionary definition for word2"]
dict ["word3"] = ["Dictionary definition for word3"]dict [word3] = [Dictionary definition for word3]
temp = input ("Enter dictionary definition for word4: ")
dict ["word4"] = [temp]
print dict

dict = {"one" : "yut", "two" : "yee", "three" : "saam"}
print dict
word = input ("Enter word to translate: ")

James Tam

word = input (Enter word to translate:)
print "English:", word, "\t", "Chinese", dict[word]

Programming: Composite types (lists, strings, tuples,
classes) 32

Removing Dictionary Entries

•Format:
- del <dictionary_name> [key]

E l•Example:
del dict ["one"]

James Tam

Example: Deletion And Checking For Membership

dict = {}
dict ["one"] = "Sentence one"
dict ["two"] = "Sentence two"
dict ["three"] = "Sentence three"dict [three] = Sentence three

if "one" in dict:
print("key one is in the dictionary")

del dict["one"]
if "one" not in dict:

print("key one is NOT in the dictionary")

James Tam

print(key one is NOT in the dictionary)

Programming: Composite types (lists, strings, tuples,
classes) 33

You Should Now Know

•What is the difference between a mutable and an immutable
type

•How strings are actually a composite type
•Common string functions and operations
•Why and when a list should be used
•How to create and initialize a list
•How to access or change the elements of a list
•Copying lists: How does it work/How to do it properly

James Tam

•When to use lists of different dimensions
•How to use the 'in' operator in conjunction with lists
•How a list can be used to store different types of information
(non-homogeneous composite type)

You Should Now Know (2)

•Common list operations and functions
•How to define an arbitrary composite type using a class
•What is a tuple and how do they differ from other compositeWhat is a tuple and how do they differ from other composite
types

James Tam

Programming: Composite types (lists, strings, tuples,
classes) 34

You Should Now Know (2)

•How to create a tuple and access the elements
•Why functions at most return a single value
•What is a dictionary and when can they can be usedWhat is a dictionary and when can they can be used
•How to create a dictionary, access and remove elements

James Tam

