Classes and Objects

You will learn how to define new types
of variables.

Composite Types: Review

*Ones that you should be familiar with now:
- Strings
- Lists
- Tuples
- Dictionaries

+Lists can be used to track relatively simple information e.g.,
grades, text-based virtual worlds.

oIt is less effective at storing more complex information (e.g.,
client list) — as you will see.

Composite Types: Review (2)

*Previous example: tracking client information
firstClient = ["James Tam”
"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Griffin”
"(708)123-4567",
"griffinp@familyguy.com",
100]
*If a large number of composite types need to be tracked (e.g.,
many clients) then you can employ lists of lists.

*(This means that each list element consists of another list).

James Tam

Example: List Of Lists

*Name of the online example: list_of_lists.py
MAX =4

def initialize (myClients):
foriin range (0, MAX, 1):
temp = [(i+1),
“default name”,
"(111)111-1111",
"foo@bar.com",
0]
myClients.append(temp)

James Tam

Example: Lists Of Lists (2)

def display (myClients):
foriin range (0, MAX, 1):
print (myClients][i])

MAIN

def main ():
myClients =[]
initialize (myClients)
display(myClients)

main ()

Some Drawbacks Of Using A List

*Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
temp = [(i+1),
“default name”,
"(111)111-1111", hat is this?
"foo@bar ;

*[s there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information (e.g., 1-800-BUY-NOWW) to be entered
in the phone number field.

Classes

*Can be used to define a generic template for a new non-
homogeneous composite type.

*[t can label and define more complex entities than a list.

*This template defines what an instance (example) of this new
composite type would consist of but it doesn’t create an
instance.

James Tam

Defining A Class

ote the convention: The
first letter is capitalized.

*Format:

class <N@me of the class>:
name of first field = <defdult value>

name of second figid = <default value>

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

Describes what information
that would be tracked by a
“Client” but doesn’t actually
create a client in memory

James Tam

Creating An Instance Of A Class

*Creating an actual instance (instance = object) is referred to as
instantiation.

*Format:
<reference name> = <name of class> ()

*Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That

Class
*Defining a class *Creating a class
- A template that describes that - Instances of that class (during
class: how many fields, what type instantiation) which can take on
of information will be stored by different forms.

each field, what default
information will be stored in a
field.

James Tam

Accessing And Changing The Fields

*Format:
<reference name>.<field name> # Accessing value
<reference name>.<field name> = <value> # Changing value

*Example:
aClient.name = "James"

James Tam

The Client List Example Implemented Using Classes

*Name of the online example: client.py

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

James Tam

The Client List Example Implemented
Using Classes (2)

def main():
firstClient = Client ()
firstClient.name = "James Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print(firstClient.name)
print(firstClient.phone)
print(firstClient.email)
print(firstClient.purchases)

main()

James Tam

What Is The Benefit Of Defining A Class

« It allows new types of variables to be declared.

* The new type can model information about most any arbitrary
entity:
- Car
- Movie
- Your pet
- A biological entity in a simulation
- A “critter’ (e.g., monster, computer-controlled player) a video game
- An ‘object’ (e.g., sword, ray gun, food, treasure) in a video game
- Etc.

James Tam

What Is The Benefit Of Defining A Class (2)

*Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

firstClient = Client ()
print(firstClient.middleName)

What Is The Benefit Of Defining A Class (2)

*Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com”
purchases =0

firstClient = Cllent

pr|nt(f|rs dIeName) Tr!ere is no field by
this name

Class Methods

*Somewhat similar to the other composite types, classes can have
functions associated with them.
-E.g.,
filename = "foo.txt"
name, suffix = filename.split(".")
*Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

*Functions that are associated with classes are referred to as
methods.

James Tam

Defining Class Methods

Format:
class <classname>:
def <method name> (self, <other parameters>):
<method body>

Unlike functions, every method
of a class must have the ‘self’
parameter (more on this later)

Example:
class Person:
name ="l have no ngate ("
def §ayl:lame (self?: TN
print ("My name is... \self.name),

-\ When the attributes are being
accessed inside the methods

of a class they MUST be
preceeded by the suffix “.self’

James Tam

Defining Class Methods: Full Example

*Name of the online example: person.py

class Person:
name ="l have no name :("
def sayName (self):
print ("My name is...", self.name)

def main ():
aPerson = Person ()
aPerson.sayName ()
aPerson.name = "Big Smiley :D"
aPerson.sayName ()

main ()

James Tam

What Is The ‘Self’ Parameter

*Reminder: When defining/call methods of a class there is
always at least one parameter.

*This parameter is called the ‘self’ reference which allows an
object to access it’s attributes inside its methods.

*It’s needed to distinguish the attributes of different objects of
the same class.

*Example: |, defsayName (): -

bart = Person () print "My name is;f..", name
lisa = Person () r
lisa.sayName (|

|

|
Whose name is this?
(This won't work)

James Tam

The Self Parameter: A Complete Example

*Name of the online example: person2.py

class Person:
name ="l have no name :("
def sayName (self):
print ("My name is...", self.name)

def main ():
lisa = Person ()
lisa.name = "Lisa Simpson, pleased to meet you."
bart = Person ()

bart.name = "I'm Bart Simpson, who the h*ck are
you???211"

Initializing The Attributes Of A Class

*Classes have a special method that can be used to initialize the
starting values of a class to some specific values.

*This method is automatically called whenever an object is

created. No spaces here

*Format:
class <Cla me>
def __imft & (self, <other parameters>):
<body of the method>
*Example:
class Person:
name ="

def __init__ (self):
self.name = "No name"

Initializing The Attributes Of A Class

*Because the ‘init” method is a method it can also be called with
parameters which are then used to initialize the attributes.

*Example:
- # Attribute is set to a default in the class definition and then the attribute
- # can be set to a non-default value in the init method. (More common
-# approach)
class Person
name = "Default name"
def __init__ (self, aName):
self.name = aName
-OR
- # Create the attribute in the init method. (Approach often used in Python).
class Person
def __init__ (self, aName):
self.name = aName

James Tam

Full Example: Using The “Init” Method

*The name of the online example: init_method1.py

class Person:
name ="l am the nameless bard"

def __init__ (self, aName):
self.name = aName

def main ():
aPerson = Person ("Finder Wyvernspur")
print (aPerson.name)

main ()

James Tam

Constructor: A Special Method

*Constructor method: a special method that is used when
defining a class and it is automatically called when an object of
that class has been created.

-E.g., aPerson = Person () # This calls the constructor

In Python this method is named ‘init’.

*Other languages may require a different name for the syntax but
it serves the same purpose (initializing the fields of an objects as
it’s being created).

*This method should never have a return statement.

Default Parameters

«Similar to other methods, ‘init” can be defined so that if
parameters aren’t passed into them then default values can be
assigned.

*Example:
def __init__ (self,@me ="l have no name");

J

This method can be called
either when a personalized
name is given or if the name
is left out.

*Method calls (to ‘init”), both will work

smiley = Person ()
jt = Person ("James")

Default Parameters: Full Example

*Name of the online example: init_method2.py

class Person:
name ="
def __init__ (self, name = "I have no name"):
self.name = name

def main ():
smiley = Person ()
print ("My name is...", smiley.name)
jt = Person ("James")
print ("My name is...", jt.name)

main ()

James Tam

Lists Of References To Objects

*You have already seen examples of composite types which are
composed of other composite types.
-E.g., list of strings, each element of the list consists of a string, each string
consists of a series of characters. aList = [james”, “stacey’]
*One important combination of composite types occurs with lists
and objects.
- Each element in the list is a reference to an object.

- Example: in the client example (covered earlier in this section) a better
implementation would employ a list of clients.

Past approach Better approach
client1 = Client() clients =]
Client2 = Client() foriin range (0, MAX_CLIENTS,1):

clients[i].append (Client())

James Tam

Example: List Of References To Objects

*Name of the online example: people.py
SIZE =4

class Person:
name = ""
age = -1

def __init__(self,aName,anAge):
self.name = aName
self.age = anAge

def display (self):
print("My name is...%s" %self.name)

print("My age is...%d" %self.age)

James Tam

Example: List Of References To Objects (2)

def main ():
people =]
foriin range (0,SIZE,1):
tempName = "Person #" + str(i+1)
people.append(Person(tempName,i))

foriin range (0,SIZE,1):
people[i].display()
print()

main()

James Tam

Modules: Dividing Up A Large Program

*In Python a module contains a part of a program in a separate
file (module name matches the file name).

*In order to access a part of a program that resides in another file
you must ‘import’ it.

*Example:
File: fun.py File: main.py
def fun (): from fun import *!
print "I'm fun!"
def main ():
fun ()
main ()
1 Import syntax:
From <file name> import <function names>
OR
import <file name> James Tam

Modules: Complete Example

*Name of the online example: modules1.zip

*Extract both files into the same folder/directory and run the
‘main’ method (type: “python main.py’)

<< In file main.py >>
from file1 import fun1, fun2
import file2

def main ():

fun1 () } Note the difference in how
)

fun2 () fun1 & fun2 vs. fun3 are called
file2.fun3(

main ()

James Tam

Modules: Complete Example (2)

<< In module filel.py >>
def fun1 ():
print ("I'm fun1!")

def fun2 ():
print ("I'm fun2!")

<< In module file2.py >>
def fun3 ():
print("I'm fun3!")

James Tam

Modules And Classes

*Class definitions are frequently contained in their own module.

*A common convention is to have the module (file) name match
the name of the class.

Filename: Person.py

class Person:
def fun1 (self):
print “fun1”

def fun2 (self):
print “fun2”

James Tam

Modules And Classes: Complete Example

*The name of the online example: modules2.zip

*Extract both files into the same folder/directory and run the
‘main’ method which is in the file called “Driver.py” (type:
“python Driver.py”)

<< File Driver.py >>
from Greetings import *

def main ():
aGreeting = Greeting ()
aGreeting.sayGreeting ()

main ()

When importing modules containing class definitions the syntax is:

From <filename> import <classes to be used in this module>

James Tam

Modules And Classes: Complete Example (2)

<< File Greetings.py >>
class Greetings:
def sayGreeting (self):
W _'pr\int ("Hello! Hallo! Sup?! Guten tag/morgen/aben! Buenos!
eil
Konichiwa! Shalom! Bonjour! Salaam alikum!
Kamostaka?")

James Tam

Calling A Classes’ Method Inside Another Method
Of The Same Class

*Similar to how attributes must be preceded by the keyword ‘self’
before they can be accessed so must the classes’ methods:
*Example:
class Bar:
x=1
def fun1(self):
print (self.x)

def fun2 (self):
self.fun1()

James Tam

Complete Example: Accessing Attributes And
Methods

*Name of the online example: modules3.zip

*To run the program extract both files into the same directory

and run the “Driver.py” file, at the command line type “python
Driver.py”

<< Driver.py >>
from Foo import *

defar;:gnz()l_ioo() * Access to the methods and attributes of a
aFoo.fun2() class outside that classes’ methods requires a
' reference and an object to be created.
aFoo.fun3()

print(aFoo.x) *This allows access to the attributes and
methods using the dot-operator via that
reference

main()

James Tam

Complete Example: Accessing Attributes And
Methods (2)

class Foo:
x=1

Access to the methods and
attributes of a class inside
that classes’ methods
requires the use of the ‘self’
keyword and the dot-
operator

def fun1 (self):
print ("fun1")

def fun2 (self):
print ("fun2")
self.fun1()

def fun3 (self):
X=2
print("Local x:", x)
print("Attribute x:", self.x)

James Tam

Important Recap: Accessing Attributes And
Methods

*Outside of a class the attribute or method MUST be preceded by
the name of the reference to the object:

*Format:
<Reference name>.<method or attribute name>

*Example:
aFoo.fun2()
aFoo0.x

James Tam

Important Recap: Accessing Attributes And
Methods (2)

*Inside the methods of a class the attribute or method MUST be
preceded by the keyword ‘self’:

*Format:
<self>.<method or attribute name>

*Example:
self.fun1()
self.x

After This Section You Should Now Know

*How to define an arbitrary composite type using a class

*What are the benefits of defining a composite type by using a
class definition over using a list

*How to create instances of a class (instantiate)

*How to access and change the attributes (fields) of a class
*How to define methods/call methods of a class

*What is a ‘self” parameter and why is it needed

*What is a constructor (__init __ in Python), when it is used and
why is it used

*How to write a method with default parameters

*The benefits and the process of creating a list of references to
objects

*How to divide your program into different modules

