
Programming: Introduction to Object-Orientation

James Tam

Classes and Objects

You will learn how to define new types
of variables.

James Tam

Composite Types: Review

•Ones that you should be familiar with now:
- Strings
- Lists
- Tuples
- Dictionaries

•Lists can be used to track relatively simple information e.g.,
grades, text-based virtual worlds.

•It is less effective at storing more complex information (e.g.,
client list) – as you will see.

Programming: Introduction to Object-Orientation

James Tam

Composite Types: Review (2)

•Previous example: tracking client information
firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Griffin”
"(708)123-4567",
"griffinp@familyguy.com",

100]

•If a large number of composite types need to be tracked (e.g.,
many clients) then you can employ lists of lists.

•(This means that each list element consists of another list).

James Tam

Example: List Of Lists

•Name of the online example: list_of_lists.py

MAX = 4

def initialize (myClients):
for i in range (0, MAX, 1):

temp = [(i+1),
“default name”,
"(111)111-1111",
"foo@bar.com",
0]

myClients.append(temp)

Programming: Introduction to Object-Orientation

James Tam

Example: Lists Of Lists (2)

def display (myClients):
for i in range (0, MAX, 1):

print (myClients[i])

MAIN
def main ():

myClients = []
initialize (myClients)
display(myClients)

main ()

James Tam

Some Drawbacks Of Using A List

•Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
temp = [(i+1),

“default name”,
"(111)111-1111",
"foo@bar.com",
0]

•Is there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information (e.g., 1-800-BUY-NOWW) to be entered
in the phone number field.

What is this?

Programming: Introduction to Object-Orientation

James Tam

Classes

•Can be used to define a generic template for a new non-
homogeneous composite type.

•It can label and define more complex entities than a list.
•This template defines what an instance (example) of this new
composite type would consist of but it doesn’t create an
instance.

James Tam

Defining A Class

•Format:
class <Name of the class>:

name of first field = <default value>
name of second field = <default value>

•Example:
class Client:

name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

Describes what information
that would be tracked by a
“Client” but doesn’t actually
create a client in memory

Note the convention: The
first letter is capitalized.

Programming: Introduction to Object-Orientation

James Tam

Creating An Instance Of A Class

•Creating an actual instance (instance = object) is referred to as
instantiation.

•Format:
<reference name> = <name of class> ()

•Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That
Class

•Defining a class
- A template that describes that
class: how many fields, what type
of information will be stored by
each field, what default
information will be stored in a
field.

•Creating a class
- Instances of that class (during
instantiation) which can take on
different forms.

Programming: Introduction to Object-Orientation

James Tam

Accessing And Changing The Fields

•Format:
<reference name>.<field name> # Accessing value
<reference name>.<field name> = <value> # Changing value

•Example:
aClient.name = "James"

James Tam

The Client List Example Implemented Using Classes

•Name of the online example: client.py

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

Programming: Introduction to Object-Orientation

James Tam

The Client List Example Implemented
Using Classes (2)

def main():
firstClient = Client ()
firstClient.name = "James Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print(firstClient.name)
print(firstClient.phone)
print(firstClient.email)
print(firstClient.purchases)

main()

James Tam

What Is The Benefit Of Defining A Class

• It allows new types of variables to be declared.
• The new type can model information about most any arbitrary

entity:
- Car
- Movie
- Your pet
- A biological entity in a simulation
- A ‘critter’ (e.g., monster, computer-controlled player) a video game
- An ‘object’ (e.g., sword, ray gun, food, treasure) in a video game
- Etc.

Programming: Introduction to Object-Orientation

James Tam

What Is The Benefit Of Defining A Class (2)

•Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print(firstClient.middleName)

James Tam

What Is The Benefit Of Defining A Class (2)

•Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print(firstClient.middleName) There is no field by

this name

Programming: Introduction to Object-Orientation

James Tam

Class Methods

•Somewhat similar to the other composite types, classes can have
functions associated with them.
- E.g.,
filename = "foo.txt"
name, suffix = filename.split('.')

•Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

•Functions that are associated with classes are referred to as
methods.

James Tam

Defining Class Methods

Format:
class <classname>:

def <method name> (self, <other parameters>):
<method body>

Example:
class Person:

name = "I have no name :("
def sayName (self):

print ("My name is...", self.name)

Unlike functions, every method
of a class must have the ‘self’
parameter (more on this later)

When the attributes are being
accessed inside the methods
of a class they MUST be
preceeded by the suffix “.self”

Programming: Introduction to Object-Orientation

James Tam

Defining Class Methods: Full Example

•Name of the online example: person.py

class Person:
name = "I have no name :("
def sayName (self):

print ("My name is...", self.name)

def main ():
aPerson = Person ()
aPerson.sayName ()
aPerson.name = "Big Smiley :D"
aPerson.sayName ()

main ()

James Tam

What Is The ‘Self’ Parameter

•Reminder: When defining/call methods of a class there is
always at least one parameter.

•This parameter is called the ‘self’ reference which allows an
object to access it’s attributes inside its methods.

•It’s needed to distinguish the attributes of different objects of
the same class.

•Example:
bart = Person ()
lisa = Person ()
lisa.sayName ()

def sayName ():
print "My name is...", name

Whose name is this?
(This won’t work)

Programming: Introduction to Object-Orientation

James Tam

The Self Parameter: A Complete Example

•Name of the online example: person2.py

class Person:
name = "I have no name :("
def sayName (self):

print ("My name is...", self.name)

def main ():
lisa = Person ()
lisa.name = "Lisa Simpson, pleased to meet you."
bart = Person ()
bart.name = "I'm Bart Simpson, who the h*ck are

you???!!!"

James Tam

Initializing The Attributes Of A Class

•Classes have a special method that can be used to initialize the
starting values of a class to some specific values.

•This method is automatically called whenever an object is
created.

•Format:
class <Class name>:
def __init__ (self, <other parameters>):

<body of the method>
•Example:

class Person:
name = ""
def __init__ (self):

self.name = "No name"

No spaces here

Programming: Introduction to Object-Orientation

James Tam

Initializing The Attributes Of A Class

•Because the ‘init’ method is a method it can also be called with
parameters which are then used to initialize the attributes.

•Example:
- # Attribute is set to a default in the class definition and then the attribute
- # can be set to a non-default value in the init method. (More common
- # approach)
class Person

name = "Default name"
def __init___(self, aName):

self.name = aName
- OR
- # Create the attribute in the init method. (Approach often used in Python).
class Person

def __init___(self, aName):
self.name = aName

James Tam

Full Example: Using The “Init” Method

•The name of the online example: init_method1.py

class Person:
name = "I am the nameless bard"

def __init__ (self, aName):
self.name = aName

def main ():
aPerson = Person ("Finder Wyvernspur")
print (aPerson.name)

main ()

Programming: Introduction to Object-Orientation

James Tam

Constructor: A Special Method

•Constructor method: a special method that is used when
defining a class and it is automatically called when an object of
that class has been created.
- E.g., aPerson = Person () # This calls the constructor

•In Python this method is named ‘init’.
•Other languages may require a different name for the syntax but
it serves the same purpose (initializing the fields of an objects as
it’s being created).

•This method should never have a return statement.

James Tam

Default Parameters

•Similar to other methods, ‘init’ can be defined so that if
parameters aren’t passed into them then default values can be
assigned.

•Example:
def __init__ (self, name = "I have no name"):

•Method calls (to ‘init’), both will work
smiley = Person ()
jt = Person ("James")

This method can be called
either when a personalized
name is given or if the name
is left out.

Programming: Introduction to Object-Orientation

James Tam

Default Parameters: Full Example

•Name of the online example: init_method2.py

class Person:
name = ""
def __init__ (self, name = "I have no name"):

self.name = name

def main ():
smiley = Person ()
print ("My name is...", smiley.name)
jt = Person ("James")
print ("My name is...", jt.name)

main ()

James Tam

Lists Of References To Objects

•You have already seen examples of composite types which are
composed of other composite types.
- E.g., list of strings, each element of the list consists of a string, each string
consists of a series of characters. aList = [“james”, “stacey”]

•One important combination of composite types occurs with lists
and objects.
- Each element in the list is a reference to an object.
- Example: in the client example (covered earlier in this section) a better
implementation would employ a list of clients.

Past approach

client1 = Client()

Client2 = Client()

Better approach

clients = []

for i in range (0, MAX_CLIENTS,1):

clients[i].append (Client())

Programming: Introduction to Object-Orientation

James Tam

Example: List Of References To Objects

•Name of the online example: people.py

SIZE = 4

class Person:
name = ""
age = -1

def __init__(self,aName,anAge):
self.name = aName
self.age = anAge

def display (self):
print("My name is...%s" %self.name)
print("My age is...%d" %self.age)

James Tam

Example: List Of References To Objects (2)

def main ():
people = []
for i in range (0,SIZE,1):

tempName = "Person #" + str(i+1)
people.append(Person(tempName,i))

for i in range (0,SIZE,1):
people[i].display()
print()

main()

Programming: Introduction to Object-Orientation

James Tam

Modules: Dividing Up A Large Program

•In Python a module contains a part of a program in a separate
file (module name matches the file name).

•In order to access a part of a program that resides in another file
you must ‘import’ it.

•Example:

def fun ():
print "I'm fun!"

File: fun.py

from fun import *1

def main ():
fun ()

main ()

File: main.py

1 Import syntax:

From <file name> import <function names>

OR

import <file name>

James Tam

Modules: Complete Example

•Name of the online example: modules1.zip

•Extract both files into the same folder/directory and run the
‘main’ method (type: “python main.py”)

<< In file main.py >>
from file1 import fun1, fun2
import file2

def main ():
fun1 ()
fun2 ()
file2.fun3()

main ()

Note the difference in how
fun1 & fun2 vs. fun3 are called

Programming: Introduction to Object-Orientation

James Tam

Modules: Complete Example (2)

<< In module file1.py >>
def fun1 ():

print ("I'm fun1!")

def fun2 ():
print ("I'm fun2!")

<< In module file2.py >>
def fun3 ():

print("I'm fun3!")

James Tam

Modules And Classes

•Class definitions are frequently contained in their own module.
•A common convention is to have the module (file) name match
the name of the class.

class Person:
def fun1 (self):

print “fun1”

def fun2 (self):
print “fun2”

Filename: Person.py

Programming: Introduction to Object-Orientation

James Tam

Modules And Classes: Complete Example

•The name of the online example: modules2.zip

•Extract both files into the same folder/directory and run the
‘main’ method which is in the file called “Driver.py” (type:
“python Driver.py”)

<< File Driver.py >>
from Greetings import *

def main ():
aGreeting = Greeting ()
aGreeting.sayGreeting ()

main ()

When importing modules containing class definitions the syntax is:

From <filename> import <classes to be used in this module>

James Tam

Modules And Classes: Complete Example (2)

<< File Greetings.py >>
class Greetings:

def sayGreeting (self):
print ("Hello! Hallo! Sup?! Guten tag/morgen/aben! Buenos!

Wei! \
Konichiwa! Shalom! Bonjour! Salaam alikum!

Kamostaka?")

Programming: Introduction to Object-Orientation

James Tam

Calling A Classes’ Method Inside Another Method
Of The Same Class

•Similar to how attributes must be preceded by the keyword ‘self’
before they can be accessed so must the classes’ methods:

•Example:
class Bar:

x = 1
def fun1(self):

print (self.x)

def fun2 (self):
self.fun1()

James Tam

Complete Example: Accessing Attributes And
Methods

•Name of the online example: modules3.zip

•To run the program extract both files into the same directory
and run the “Driver.py” file, at the command line type “python
Driver.py”
<< Driver.py >>
from Foo import *
def main ():

aFoo = Foo()
aFoo.fun2()
aFoo.fun3()
print(aFoo.x)

main()

• Access to the methods and attributes of a
class outside that classes’ methods requires a
reference and an object to be created.

• This allows access to the attributes and
methods using the dot-operator via that
reference

Programming: Introduction to Object-Orientation

James Tam

Complete Example: Accessing Attributes And
Methods (2)

class Foo:
x = 1

def fun1 (self):
print ("fun1")

def fun2 (self):
print ("fun2")
self.fun1()

def fun3 (self):
x = 2
print("Local x:", x)
print("Attribute x:", self.x)

Access to the methods and
attributes of a class inside
that classes’ methods
requires the use of the ‘self’
keyword and the dot-
operator

James Tam

Important Recap: Accessing Attributes And
Methods

•Outside of a class the attribute or method MUST be preceded by
the name of the reference to the object:

•Format:
<Reference name>.<method or attribute name>

•Example:
aFoo.fun2()
aFoo.x

Programming: Introduction to Object-Orientation

James Tam

Important Recap: Accessing Attributes And
Methods (2)

•Inside the methods of a class the attribute or method MUST be
preceded by the keyword ‘self’:

•Format:
<self>.<method or attribute name>

•Example:
self.fun1()
self.x

James Tam

After This Section You Should Now Know

•How to define an arbitrary composite type using a class
•What are the benefits of defining a composite type by using a
class definition over using a list

•How to create instances of a class (instantiate)
•How to access and change the attributes (fields) of a class
•How to define methods/call methods of a class
•What is a ‘self’ parameter and why is it needed
•What is a constructor (__init__ in Python), when it is used and
why is it used

•How to write a method with default parameters
•The benefits and the process of creating a list of references to
objects

•How to divide your program into different modules

