
CPSC 219: Administrative information

James Tam

Introduction To ‘C’ Programming

You will learn basic programming
concepts in a low level
procedural language.

James Tam

Programming Languages

•There are many different languages
- (Just a small sample): ‘C’, ‘C++’, ‘C#’, Tcl/Tk, Java, Python, Pascal,
Assembly language (many kinds) etc. etc. etc.

•No one language is the best for all situations
- Different languages were written for solving different types of problems.

•Languages can be classified according to different criteria
- High vs. low level languages.
- The programming paradigm employed (approach to writing the solution to
a problem).

CPSC 219: Administrative information

James Tam

High Vs. Low Level Languages

Machine language

Low level
programming
language

Computer hardware

High level
programming
language

Binary

10100000 1010 00

Assembly

MOV #10, R0

E.g., Python, Java, C++

for (i = 1; i <= 10; i++)

Human languages E.g., English, French, Spanish,
Chinese, German, Arabic etc.

High
level

Low
level

James Tam

High Vs. Low Level Languages

•Although there are obvious benefits to writing a program in a
high vs. low level language it’s not a continuum of best vs.
worst

•Each level of language has it’s place and is used for a different
category of problem.

CPSC 219: Administrative information

James Tam

Programming Paradigms

•Programming paradigm:
- The way in which in a solution to a problem is implemented.
- The approach taken to decompose a large and complex problem into
manageable parts.

•There are several paradigms but you will learn (re-learn) two in
this course:
- Procedural programming (you’ve already worked with this one)
- Object-oriented programming

James Tam

Procedural Programming: Breaking A Large
Problem Down

Figure extracted from Computer Science Illuminated by Dale N. and Lewis J.

General approach

Approach
to part of
problem

Specific
steps of
the
solution

Abstract/
General

Particular

Top

Bottom

Approach
to part of
problem

Approach
to part of
problem

Specific
steps of
the
solution

Specific
steps of
the
solution

Specific
steps of
the
solution

CPSC 219: Administrative information

James Tam

Procedural Programming

Main tasks to
be fulfilled by
the program

Important
subtask #1

Important
subtask #2

Important
subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

James Tam

Decomposing A Problem Into Procedures

•Break down the program by what it does (described with
actions/verbs).

•Eventually the different parts of the program will be
implemented as functions.

CPSC 219: Administrative information

James Tam

Procedural Programming: An Example

•How would a word processing program be decomposed into
subtasks and functions?

James Tam

Object-Oriented Programming

•Break down the program into ‘physical’ components (nouns).
•Each of these physical components is an ‘object’.
•Objects include operations (functions which are referred to as
‘methods’ in the Object-Oriented paradigm) but also data
(information about each object).
- The methods can be determined by the actions (verbs) that each object
should be able to complete.

- The data can be determined by examining the type of information that each
object needs to store.

•Example of an everyday object (from “Starting out with
Python” by Tony Gaddis): An Alarm clock
- What are the attributes of the alarm clock (information needed by the clock
in order to properly function)

- What are the methods of the alarm clock (operations that the clock must
perform).

CPSC 219: Administrative information

James Tam

Attributes Of The Alarm Clock

•Current second (0 – 59)
•Current minute (0 – 59)
•Current hour (1 – 12)
•Alarm time (a valid hour and a valid minute)
•A flag to indicate if the alarm is set (true/false)

James Tam

Methods Of The Alarm Clock

•Set time
•Set alarm time
•Turn alarm on/off

CPSC 219: Administrative information

James Tam

Example Decomposition Into Objects

Gambling game: dice

Die Player GameInterface

? ? ? ? ?

James Tam

Object-Oriented Programming: An Example

•How would the following program be decomposed into objects?
•What sort of attributes and methods would some of those
objects consist of?

Game description from: http://www.textfiles.com/, Dungeon Master © FTL games.

You are the Theron, apprentice to the Grey Lord, sent by your mentor to find the
Firestaff hidden within the dungeon. You, as Theron Lord, first must enter the Hall of
Champions (the first level of the dungeon) and find four champions to be your party.
Each champion has a name, at least one class, and several physical attributes (such
as strength, dexterity, wisdom, vitality etc.). The available classes are Fighter, Ninja,
Wizard, and Priest.

The dungeon contains monsters, traps, doors, levers, and an assortment of other
items to work with while you are exploring.

CPSC 219: Administrative information

James Tam

Recall: The Process Of Creating And Running A
Computer Program

Step 1:
A programmer writes
a computer program
in a programming
language

e.g.,
int main ()
{

: :
}

Step 2:
A translation program
(translator) converts
the “English-like”
programming
statements into the
one form that the
computer can
understand
(machine/binary)

Step 3:
The machine
language
instructions can be
directly executed.
e.g.,
1000 0100
1111 1001

James Tam

Translators

• Convert computer programs to machine language
• Types
1) Interpreters

• Each time that the program is run the interpreter translates the program
(translating a part at a time).

• If there are any errors during the process of interpreting the program, the
program will stop running right when the error is encountered.

• Advantage: partial execution of a program is possible.
2) Compilers

• Before the program is run the compiler translates the program (compiling it all
at once).

• If there are any errors during the compilation process, no machine language
executable will be produced.

• If there are no errors during compilation then the translated machine language
program can be run.

• Advantage: programs execute must faster.

CPSC 219: Administrative information

James Tam

Compiling ‘C’ Programs: Basic View

gcc

Compiler

input 1000 0001

1010 1000

Machine
language
instructions
(file: a.out)

output

int main ()

{

int num;

num = 3.14;

: :

}

Computer
program (must
end in “dot-c”)

James Tam

The Smallest Compileable ‘C’ Program

The name of the online example is: smallest.c
main ()
{

}

CPSC 219: Administrative information

James Tam

A Small Program With Better Style

The name of the online example is: smallest2.c

/*
Author: James Tam
Date: march 24, 2003

A slightly larger C program that follows good "C" style conventions.
*/

int
main ()
{

return(0);
}

James Tam

Creating And Compiling Programs On The
Computer Science Network

filename.c
(UNIX file)

C program
XEmacs

Text editor

gcc

C compiler

Machine language
program

a.out (UNIX
file)

To begin creating the program in UNIX
type "XEmacs filename.c"

To compile the program in
UNIX type "gcc filename.c"

To run the program in
UNIX type "./a.out"

CPSC 219: Administrative information

James Tam

The Basic Structure Of A C Program

int
main ()
{

}

Local variables
Program statements

/* Program documentation */

Pre-processor directives:
External program code (libraries)

Note: More will be added later to this basic structure.

‘Main’ is the
starting execution
point for a C
program

James Tam

Program Documentation

•It doesn’t get translated into binary.
•It doesn’t contain instructions for the computer to execute.
•It is for the reader of the program:

- What does the program do e.g., tax program.
- What are it’s capabilities e.g., it calculates personal or small business tax.
- What are it’s limitations e.g., it only follows Canadian tax laws and cannot
be used in the US.

- What is the version of the program
•If you don’t use numbers for the different versions of your program then
consider using dates.

- How does the program work.
•This is often a description in English (or another high-level) language that
describes the way in which the program fulfills its functions.

•The purpose of this description is to help the reader quickly understand how the
program works

CPSC 219: Administrative information

James Tam

Program Documentation

•It’s distinguished from regular program code using:
/* Start of documentation
*/ End of documentation

•Every in between these two points will be treated as
documentation (which may span more than a single line).

•Documentation must have a matching start and an end point.
•Beware!!! Comments CANNOT be nested!!!
Program: problem!!!
/*

/* */

*/

Can you spot the
problem?

James Tam

Declaring Variables

•Format:
<type of information stored in the variable> <name of the variable>;

•Example:
int
main ()
{

int num;
}

CPSC 219: Administrative information

James Tam

Variable Naming Conventions

-Should be meaningful
-Any combination of letters, numbers or underscore (first
character must be a letter or an underscore).

-Can't be a reserved word (see the “Reserved Words” slide)
-Avoid distinguishing variable names only by case (even
though the language is case sensitive).

-For variable names composed of multiple words separate each
word by capitalizing the first letter of each word (save for the
first word) or by using an underscore.

James Tam

Reserved Words In C

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Source: Mark Hancock CPSC 219

CPSC 219: Administrative information

James Tam

Variables Must Be Declared Before They Can Be
Used (Correct ☺)

•Correct:
main()
{

int num;
num = 12;
/* Use variable ‘num’ here */

}

•An acceptable alternative:
main()
{

int num = 12;
/* Use variable ‘num’ here */

}

James Tam

Variables Must Be Declared Before They Can Be
Used (Problem! /)

•Incorrect:
main ()
{

num = 12;
}

•Still incorrect!
main ()
{

num = 0;
int num;

}

Note this is one of
several differences
from Python

CPSC 219: Administrative information

James Tam

Some Types Of Variables In C

•Integer
- Char (character information is encoded in terms of ASCII numeric values)
- Short
- Int
- Long
- Long Long

•Real number
- Float
- Double

James Tam

Always Initialize Your Variables Before Using
Them

•It’s regarded as good programming style
•Example

main ()
{

int num = 0;
/* If num is referred to now, it’s known what’s stored there. */

}

•Vs.
main ()
{

int num;
/ * If num is referred to at this point it’s contents cannot be reliably relied

on. */
}

CPSC 219: Administrative information

James Tam

Statement

•A statement in the C programming language can be thought of
as an instruction.

•As you know from your previous programming experience
instructions can take many forms e.g., declare variables, display
output, get user input, call a function etc.

•Compiler requirement: All statements in C must be followed by
a semi-colon (even the last one in the program).

James Tam

Displaying Output

•Displaying information onscreen can be done with the printf
function.

•To use this function you must include a reference to the
appropriate library (“stdio.h”) at the top of your program:

•Format
printf (“<output string>");

•Example
printf (“Welcome to my computer program");

#include <stdio.h>

main ()
{

:
}

CPSC 219: Administrative information

James Tam

Displaying The Contents Of Variables (Memory)

•Format specifiers must be used to define the format of the
variables.

•A format specifier is preceded by the percent sign % and type
and format of the variable to be displayed.

•Format:
printf (“%<type of the variable>“, <variable name>);

•Example:
int num = 0;
printf (“%d“, num);

James Tam

Some Types Of Format Specifiers For Variables

print (“%lf”, num);Long float%lf

Print a percent sign

Floating point (real)

Unsigned integer

Signed integer

(Single) character

Format

printf (“%%”)%%

printf (“%f”, num);%f

printf (“%u”, num);%u

printf (“%d”, num);%d or %i

printf (“%c”, ch);%c

ExampleCode

CPSC 219: Administrative information

James Tam

Formatting Output

•Can be done via escape sequences.

Double quote

Single quote

Backslash

Tab

Newline

Explanation

printf (“\””);

printf (“\’”);

printf (“\\”);

printf (“hi\tthere”);

printf (“hi\nthere”);

Example

\”

\’

\\

\t

\n

Code

James Tam

Formatting Real Number Output

•Format:
printf (“%<field size>.<places of precision> <real number specifier>”);

•Example:
The name of the online example is: output.c

float num = 1.1;
printf ("%0.2f", num);

CPSC 219: Administrative information

James Tam

Named Constants

•A memory location that is assigned a value that CANNOT be changed
•Declared much like a variable except that the word ‘const’ is used as a flag
that the memory location is unchangeable.

•The naming conventions for choosing variable names generally apply to
constants but the name of constants should be all UPPER CASE. (You can
separate multiple words with an underscore).

•Format:
<type of the constant> const <name of the constant> = <value of the constant>

•Example:
main ()
{

float const PI = 3.14;
}

James Tam

Named Constants: A Compileable Example

The name of the online example: constants.c

int
main ()
{

float const TAX_RATE = 0.25;
float afterTaxes;
int grossIncome = 100000;
afterTaxes = grossIncome – (grossIncome * TAX_RATE);`
/* Would be nice but don’t do this: TAX_RATE = 0.0 */

}

CPSC 219: Administrative information

James Tam

Purpose Of Named Constants

•1) Makes the program easier to understand
populationChange = (0.1758 – 0.1257) * currentPopulation;

Vs.
begin

: :
float const BIRTH_RATE = 0.1758;
float MORTALITY_RATE = 0.1257;
populationChange = (BIRTH_RATE – MORTALITY_RATE) *

currentPopulation;

Magic Numbers
(avoid whenever
possible!)

James Tam

Purpose Of Named Constants (2)

•2) Makes the program easier to maintain
•If the constant is referred to several times throughout the program then
changing the value of the constant once will change it throughout the
program.

CPSC 219: Administrative information

James Tam

Purpose Of Named Constants (3)

#include <stdio.h>
main ()
{

float const BIRTH_RATE = 0.1758;
float const MORTALITY_RATE = 0.1257;
float populationChange = 0;
float currentPopulation = 1000000;
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation;
if (populationChange > 0)

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

else if (populationChange < 0)
printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",

BIRTH_RATE, MORTALITY_RATE, populationChange);
else

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

}

James Tam

Purpose Of Named Constants (3)

#include <stdio.h>
main ()
{

float const BIRTH_RATE = 0.85;
float const MORTALITY_RATE = 0.1257;
float populationChange = 0;
float currentPopulation = 1000000;
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation;
if (populationChange > 0)

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

else if (populationChange < 0)
printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",

BIRTH_RATE, MORTALITY_RATE, populationChange);
else

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

}

One change in the
initialization of the
constant changes every
reference to that
constant

CPSC 219: Administrative information

James Tam

Purpose Of Named Constants (3)

#include <stdio.h>
main ()
{

float const BIRTH_RATE = 0.85;
float const MORTALITY_RATE = 0.01;
float populationChange = 0;
float currentPopulation = 1000000;
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation;
if (populationChange > 0)

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

else if (populationChange < 0)
printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",

BIRTH_RATE, MORTALITY_RATE, populationChange);
else

printf ("Birth rate: %0.2f \t Mortality rate: %0.2f \t Population change: %0.2f \n",
BIRTH_RATE, MORTALITY_RATE, populationChange);

}

One change in the
initialization of the
constant changes every
reference to that
constant

James Tam

Getting Input

•Getting user input can be done with the scanf function.
•To use this function you must include a reference to the
appropriate library (stdio.h) at the top of your program.

•Format:
scanf ("%<type of information to be read>", &<name of the variable>);

•Example:
The name of the online example: input.c

int num;
scanf ("%d", &num);

Don’t forget the
ampersand!

CPSC 219: Administrative information

James Tam

Common Mathematical Operators In C

--a or a--;Decrease by oneDecrement

++a; or a++;Increase by oneIncrement

a = b / c;Division/

a = b * c;Multiplication*

a = b – c;Subtraction-

a = b + c;Addition+

ExampleDescriptionOperator

James Tam

Branching

•Branching statements implemented in C:
- If,
- Else
- Else-if
- Switch

CPSC 219: Administrative information

James Tam

The ‘If’ Branch

•It’s used if one or more statements are to be executed for the
‘true’ condition.

•Format:
if (Expression)
body

•Example:
if (x > 0)

printf (“positive”);

if (income <= 10000)
{

printf (“Eligible for social assistance”);
taxCredit = 100;
taxRate = 0.1;

}

James Tam

If-Else Branching

•It’s used if one body (statement) is to be executed for the true
condition and another body (statement) is to be executed for the
false condition.

•Format:
if (Expression)
body

else
body

•Example:
The name of the online example is: branch.c

if (x > 0)
printf (“Positive”);

else
printf (“Not positive”);

CPSC 219: Administrative information

James Tam

If-Else Branching (2)

•Example:
if (x > 0)

printf (“Positive”);
else if (x < 0)

printf (“Negative”);
else

printf (“Zero”);

James Tam

The Switch: An Alternate To If, Else-If

•It’s more limited in use: It can only be used to check for
equality.

•Some regard it’s use as good programming style because it
results in cleaner (smaller) programs.

•Typically it’s used with menu-driven programs.

BLACKJACK GAME OPTIONS

(d)eal another card

(s)tay with existing hand

(q)uit game

CPSC 219: Administrative information

James Tam

The Switch (Character Selection)

•Format:
switch (selection)
{

case ‘first character value’:
body
break;

case ‘second character value ’:
body
break;
: :

default:
body

}

Note: The use
of the break
statement is
NOT optional!

James Tam

The Switch (Character Selection: 2)

•Example:
switch (variable name)
{

case ‘d’:
printf (“Deal: you want another card”);
break;

case ‘s’:
printf (“Stay: you want no more cards”);
break;

case ‘q’:
printf (“Quit game”);
break;

default:
printf (“Invalid option”);

}

CPSC 219: Administrative information

James Tam

The Switch (Integer Selection)

•Format:
switch (selection)
{

case <First integer value>:
body
break;

case <Second integer value>:
body
break;
: :

default:
body

}

James Tam

The Switch (Integer Selection: 2)

•Example:
The name of the online example is: switch.c

switch (age)
{

case 0:
printf ("Newborn");
break;

case 1:
case 2:
case 3:

printf ("Baby");
break;

case 13:
case 14:
case 15:
case 16:
case 17:
case 18:
case 19:

printf ("Teenager");
}

Note: The break was
purposely omitted in
order to group similar
conditions.

CPSC 219: Administrative information

James Tam

Logical Operators And Branching

if (answer != ‘q’)
if !(answer = ‘q’)

!NOT

if ((x >0) || (y >0))||OR

if ((x > 0) && (y > 0))&&AND

Example‘C’ operatorOperator

James Tam

Nested Branches

•One decision is inside another.
•Decision making is dependent.
•The first decision must evaluate to true before the successive
decisions are even considered for evaluation.

•Format:
if (Expression)

if (Expression) then
inner body

•Example:
if (income < 10000)

if (citizen == ‘y’)
printf (“Eligible for social assistance”);

tax = income * TAX_RATE;

CPSC 219: Administrative information

James Tam

Loops

•Looping statements implemented in C:
- For
- While
- Do-while

•A loop control (typically a variable) determines whether a loop
continues to execute.

James Tam

For Loops

•Typically used when it is known in advance how many times
that the loop will execute (counting loop). The loop executes
until the loop control would go past the stopping condition.

•Format:
for (initialize loop control; check stopping condition; update control)
body

•Example:
for (int i = 0; i <= 10; i++)

total = total + i;

CPSC 219: Administrative information

James Tam

While Loops

•It can be used for almost any stopping condition. The loop executes as long
as the expression is true.

•Format:
while (Expression)

body

•Example:
The name of the online example is: loop.c

while ((answer != ‘q’) && (answer != ‘Q’))
{

/* Rerun program */
printf (“Answer q to quit: “);
scanf (“%c”, &answer);
/* Uncomment the following if you actually want to run this program */
/* getchar (); */

}

James Tam

Post Test Loops

•Are guaranteed to execute the loop at least once because the
stopping condition is checked after (post) the body is executed.

•Format:
do
{

body
} while (expression);

CPSC 219: Administrative information

James Tam

Post Test Loops (2)

•Example:
do
{
/* Run program */
printf ("Answer 'q' to quit: ");
scanf ("%c", &answer);
getchar ();

} while ((answer != 'q') && (answer != 'Q'));

James Tam

Types And Variables

•Generally once a variable has been declared to store a certain
type of information changes should not be later made.

•Example:
int num;
num = <character value>;

Avoid doing this
unless there is a
compelling reason

CPSC 219: Administrative information

James Tam

Casting

•Casting: it’s conversion from one type of information to another
type.

•(Again unless there is a compelling reason to do this then the
practice should be avoided).

•Format:
<variable 1> = (<type of variable 1>) <variable or constant 2>;

•Example:
int a_value;
char ch = ‘A’;
a_value = (int) ch;
printf (“%d”, a_value);

James Tam

After This Section You Should Now Know

•The difference between a high and low level programming
language

•How the procedural and the object-oriented programming
paradigms are used to implement computer programs
- How to find the candidate functions using the procedural approach
- How to find the candidate objects, method and attributes of objects using
the object-oriented approach

•The difference between an interpreter and a compiler
•The process for creating and executing a C program and the
basic structure of a C program

•How to document a program and why documentation is
important

CPSC 219: Administrative information

James Tam

After This Section You Should Now Know (2)

•How to declare and access variables, good naming conventions
for variables, some variable types, the importance of initializing
variables

•How to display formatted output
•How to get user input
•How to declare and access named constants, the purpose of
named constants

•Some basic mathematical operators
•How to use branching constructs: if, else, if-else-if, switch
•How to use looping mechanisms: while, for, do-while
•Logical operators that may be used in conjunction with
branching and looping

James Tam

After This Section You Should Now Know (3)

•The importance of types (for variables) in a programming
language.

•What is casting and how to do it.

