
CPSC 233: Introduction to Data Structures, Lists

James Tam

Introduction To Data Structures

This section introduces the concept of a
data structure as well as providing the

details of a specific example: a list.

James Tam

What Is A Data Structure

•A composite type that has a set of basic operations (e.g., display
elements of a list) that may be performed on instances of that
type.
- It can be accessed as a whole (e.g., pass the entire list as a parameter to a
function).

- Individual elements can also be accessed (e.g., update the value for a
single list element).

•The type may be a built-in part of the programming language
- e.g., lists are included with the Python language.

•The type may also be defined by the programmer inside a
program (for languages which don’t include this composite
type)
class List
{

: :
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

What Is A Data Structure (2)

-In some cases the data structure may only be partially
implemented as part of the language, some operations must be
manually written by the programmer.

-Example: The ability to add an element to a list has been
implemented as a function in Python.

aGrid = [] # Creates an empty list
aGrid.append (12) # Adds a number to the end of the list

-In a language such as ‘C’ a list is implemented as an array but
the operation to add elements to the end of the list must be
written by the programmer.

-Moral: when choosing a programming language look for built-
in support for key features.

James Tam

Lists

•Lists are a type of data structure (one of the simplest and most
commonly used).
- e.g., grades for a lecture can be stored in the form of a list

•List operations: creation, adding new elements, searching for
elements, removing existing elements, modifying elements,
display elements, sorting elements, deleting the entire list).

•List implementation in Java: array, linked list.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation
(the name of the array is actually a reference to the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory
allocation (the name of the array is actually a reference to
the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Declaring Arrays

• Arrays in Java involve a reference to the array so creating an
array requires two steps:

1) Declaring a reference to the array
2) Allocating the memory for the array

James Tam

Declaring A Reference To An Array

•Format:
// The number of pairs of square brackets specifies the number of
// dimensions.
<type> [] <array name>;

•Example:
int [] arr;
int [][] arr;

CPSC 233: Introduction to Data Structures, Lists

James Tam

Allocating Memory For An Array

•Format:
<array name> = new <array type> [<no elements>];

•Example:
arr = new int [SIZE];
arr = new int [ROW SIZE][COLUMN SIZE];

(Both steps can be combined together):
int [] arr = new int[SIZE];

James Tam

Arrays: An Example

•This example can be found in UNIX under:
/home/233/examples/lists/firstExample
public class Driver
{

public static void main (String [] args)
{

int i;
int len;
int [] arr;

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays: An Example

Scanner in = new Scanner (System.in);
System.out.print("Enter the number of array elements: ");
len = in.nextInt ();
arr = new int [len];
System.out.println("Array Arr has " + arr.length + " elements.");
for (i = 0; i < arr.length; i++)
{

arr[i] = i;
System.out.println("Element[" + i + "]=" + arr[i]);

}
}

}

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation
(the name of the array is actually a reference to the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

- Null array references
- Array bounds checking

CPSC 233: Introduction to Data Structures, Lists

James Tam

Using A Null Reference

int [] arr = null;
arr[0] = 1; NullPointerException

James Tam

Exceeding The Array Bounds

int [] arr = new int [4];
int i;
for (i = 0; i <= 4; i++)

arr[i] = i; ArrayIndexOutOfBoundsException

(when i = 4)

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Creation)

•Simply declare an array variable
<array name> = new <array type> [<no elements>];

James Tam

List Operations: Arrays (Display)

•Unless it can be guaranteed that the list will always be full
(unlikely) then some mechanism for determining that the end of
the list has been reached is needed.

•If list elements cannot take on certain values then unoccupied
list elements can be ‘marked’ with an invalid value.

•Example: grades
100

75

65

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

0

80

-1

-1

-1

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Display: 2)

•If list elements can’t be marked then a special variable (“last”
index) can be used to mark the last occupied element.

•Alternatively a special variable can also be used to mark the
next element free.
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

lastOccupiedElement = 3

James Tam

List Operations: Arrays (Search)

•Compare the item being searched for (“key”) and compare vs.
the list element.

Bob

Mary

Alice

Index[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Kayla

KaylaKey

Bob = Kayla? (no match)

Index Mary = Kayla? (no match)

Index Alice = Kayla? (no match)

Bruce

Index Kayla = Kayla? (Match found)

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Insertion)

•Insertion at the end.
- Some mechanism is needed to either find or keep track of the last occupied
element.

Bob

Mary

Alice Last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Increment last (new index of last element)Kayla

James Tam

List Operations: Arrays (Insertion: 2)

•In order insertion.
- Some mechanism is needed to find the insertion point (search).
- Elements may need to be shifted.

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Removing Elements)

•A search is needed to find the element to remove.
•Depending upon the index of the element to be deleted, other
elements may need to be shifted.

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

James Tam

List Operations: Arrays (Destroying The Entire
List)

•Recall that Java employs automatic garbage collection.
•Setting the reference to the array to null will eventually allow
the array to be garbage collected.
<array name> = null;

•Note: many languages do not employ automatic garbage
collection and in those cases, either the entire array or each
element must be manually de-allocated in memory.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Memory Leak

•A technical term for programs that don’t free up dynamically
allocated memory.

•It can be serious problem because it may result in a drastic
slowdown of a program.

James Tam

Linked Lists

•An alternate implementation of a list.
•The program code is somewhat more complex but some
operations are more efficient (e.g., additions and deletions don’t
require shifting of elements).

•Also linked lists tend to me more memory efficient that arrays.
- The typical approach with an array implementation is to make the array
larger than needed. (Unused elements are allocated in memory and the
space is wasted).

- With a linked list implementation, elements only take up space in memory
as they’re needed.
Start End

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Elements: Nodes

Freight “data”

Connector

Node

Data (data)
Pointer/reference

(connector)

James Tam

Linked Lists: Important Details

•Unlike arrays, many details must be manually and explicitly
specified by the programmer: start of the list, connections
between elements, end of the list.

Data Ptr Data Ptr Data Ptr

Linked
List

Head

1 The approximate equivalent of a pointer (“ptr”) in Java is a reference.

CPSC 233: Introduction to Data Structures, Lists

James Tam

More On Connections: The Next Pointer

•Because linked lists only create elements as needed a special
marker is needed for the end of the list.

•The ‘next’ attribute of a node will either:
- Contain a reference/address of the next node in the list.

- Contain a null value.

Data Next Data Next

Data Next

James Tam

List Operations: Linked Lists (Creation)

•After a type for the list has been declared then creating a new
list requires that an instance be created and initialized.

•Example:
Node head = null;

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Display)

•A temporary pointer/reference is used when successively
displaying the elements of the list.

•When the temporary pointer is null, the end of the list has been
reached.

•Pseudo code algorithm:
while (temp != null)

display node
temp = address of next node

•Graphical illustration of the algorithm:

Data Ptr Data Ptr Data Ptr

TempTemp
Temp

Temp

Head

James Tam

List Operations: Linked Lists (Search)

•The algorithm is similar to displaying list elements except that
there must be an additional check to see if a match has occurred.

Temp

Data Ptr Data Ptr Data Ptr

Head

1. Temp = null (end)?

2. Data match?

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations That Change List Membership

•These two operations (add/remove) change the number of
elements in a list.

•The first step is to find the point in the list where the node is to
be added or deleted (typically requires a search).

•Once the point in the list has been found, changing list
membership is merely a reassignment of pointers/references.
- Again: unlike the case with arrays, no shifting is needed.

James Tam

List Operations: Linked Lists (Insertion)

NULL

LIST

NEW
ELEMENT

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Insertion: 2)

NULL

LIST

NEW
ELEMENT

James Tam

List Operations: Linked Lists (Insertion: 3)

NULL

LIST

NEW
ELEMENT

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Removing Elements)

NULL

LIST Remove

James Tam

List Operations: Linked Lists (Removing Elements)

NULL

LIST Remove

Temp

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Removing Elements)

NULL

LIST Remove

Temp

Node to be removed has been bypassed
(effectively deleted from the list)

James Tam

List Operations: Linked Lists (Destroying The
Entire List)

•With linked lists removing an entire list is similar to how it’s
done with the array implementation.
head = null;

•Important reminder: many languages to not employ automatic
garbage collection and in those cases each node must be
manually de-allocated in memory (step through each element in
the list and free up the memory but take care not to lose the
connection with the rest of the list).

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays Of Objects (References)

•An array of objects is actually an array of references to objects
e.g., Foo [] arr = new Foo [4];

•The elements are initialized to null by default
arr[0].setNum(1); NullPointerException

James Tam

Arrays Of References To Objects: An Example

•The complete example can be found in the directory
/home/233/examples/lists/secondExample

Driver

Menu
-aManager : Manager

-menuSelection : String

+Manager ()

+getSelection ()

+processSelection ()

Book
-name : String

+Book (newName :
String)

+getName()

+setName (newName :
String)

Manager
+MAX_ELEMENTS: int

-bookList [0..9] : Book

-lastElement: int

+Manager ()

+display ()

+add ()

+remove ()

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Book Class

public class Book
{

private String name;
public Book (String aName)
{

setName(aName);
}
public void setName (String aName)
{

name = aName;
}
public String getName ()
{

return name;
}

}

James Tam

The Manager Class

public class Manager
{

public final int MAX_ELEMENTS = 10;
private Book [] bookList;
private int lastElement;

public Manager ()
{

bookList = new Book[MAX_ELEMENTS];
int i;
for (i = 0; i < MAX_ELEMENTS; i++)
{

bookList[i] = null;
}
lastElement = -1;

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Manager Class (2)

public void display()
{

int i;
System.out.println("Displaying list");
if (lastElement == -1)

System.out.println("\tList is empty");
for (i = 0; i <= lastElement; i++)
{

System.out.println("\tTitle No. " + (i+1) + ": "+ bookList[i].getName());
}

}

James Tam

The Manager Class (3)

public void add ()
{

String newName;
Scanner in;
if ((lastElement+1) < MAX_ELEMENTS)
{

System.out.print("Enter a title for the book: ");
in = new Scanner (System.in);
newName = in.nextLine ();
lastElement++;
bookList[lastElement] = new Book(newName);

}
else
{

System.out.print("Cannot add new element: ");
System.out.println("List already has " + MAX_ELEMENTS + "
elements.");

}
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Manager Class (4)

public void remove ()
{

if (lastElement != -1)
{

bookList[lastElement] = null;
lastElement--;
System.out.println("Last element removed from list.");

}
else
{

System.out.println("List is already empty: Nothing to remove");
}

}
}

James Tam

The Menu Class

public class Menu
{

private Manager aManager;
private String menuSelection;

public Menu ()
{

aManager = new Manager ();
menuSelection = null;

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Menu Class (2)

public void display ()
{

System.out.println("\n\nLIST MANAGEMENT PROGRAM: OPTIONS");
System.out.println("\t(d)isplay list");
System.out.println("\t(a)dd new element to end of list");
System.out.println("\t(r)emove last element from the list");
System.out.println("\t(q)uit program");
System.out.print("Selection: ");

}

public void getSelection ()
{

String newName;
Scanner in = new Scanner (System.in);
menuSelection = in.nextLine ();

}

James Tam

The Menu Class (3)

public void processSelection ()
{

do
{

display();
getSelection();
if (menuSelection.equals("d"))

aManager.display ();
else if (menuSelection.equals("a"))

aManager.add ();
else if (menuSelection.equals("r"))

aManager.remove ();
else if (menuSelection.equals("q"))

System.out.println ("Quitting program.");
else

System.out.println("Please enter one of 'd','a','r' or 'q'");
} while (!(menuSelection.equals("q")));

}
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Menu aMenu = new Menu ();
aMenu.processSelection();

} // End of main.
} // End of class Driver.

James Tam

After This Section You Should Now Know

•What is a data structure
•How a data structure may be defined in Java
•Common list operations
•How the common list operations are implemented using arrays
•How a Java array employs dynamic memory allocation
•What is a memory leak
•How the common list operations are implemented using linked
lists

•What are the advantages and disadvantages of implementing a
list as an array vs. as a linked list

•How to implement a list with elements that are composite types
(array of references)

