
Design rules, software testing

James Tam

Object-Oriented Design And
Software Testing

In this section of notes you will learn about
principles of good design as well how
testing is an important part of good design

James Tam

Some Principles Of Good Design

1. Avoid going “method mad”
2. Keep an eye on your parameter lists
3. Minimize modifying immutable objects
4. Be cautious in the use of references
5. Be cautious when writing accessor and mutator methods

This list was partially derived from “Effective Java” by Joshua Bloch and is by
no means complete. It is meant only as a starting point to get students
thinking more about why a practice may be regarded as “good” or “bad” style.

Design rules, software testing

James Tam

1. Avoid Going Method Mad

•There should be a reason for each method
•Creating too many methods makes a class difficult to
understand, use and maintain

•A good approach is to check for redundancies that exist
between different methods

James Tam

2. Keep An Eye On Your Parameter Lists

•Avoid long parameter lists
–Rule of thumb: Three parameters is the maximum

•Avoid distinguishing overloaded methods solely by the order
of the parameters

Design rules, software testing

James Tam

3. Minimize Modifying Immutable Objects

• Immutable objects
• Once instantiated they cannot change (all or nothing)

e.g., String s = "hello";
s = s + " there";

James Tam

3. Minimize Modifying Immutable Objects (2)

•If you must make many changes consider substituting
immutable objects with mutable ones

e.g.,
public class StringBuffer
{

public StringBuffer (String str);
public StringBuffer append (String str);

: : : :

}
For more information about this class
•http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html

Design rules, software testing

James Tam

3. Minimize Modifying Immutable Objects (3)

public class StringExample
{

public static void main (String []
args)
{

String s = "0";
for (int i = 1; i < 100000; i++)

s = s + i;
}

}

public class StringBufferExample
{

public static void main (String [] args)
{

StringBuffer s = new StringBuffer("0");
for (int i = 1; i < 100000; i++)

s = s.append(i);
}

}

James Tam

4. Be Cautious In The Use Of References

• Similar pitfall to using global variables:
int i;

fun ()
{

for (i = 0; i < 100; i++) { printf("foo"); }
}

main ():
{

i = 10;
fun ();

}

With many programming
languages (e.g., ‘C’ /
‘C++’) global variables
can be accidentally
changed anywhere after
their declaration.

Design rules, software testing

James Tam

4. Be Cautious In The Use Of References (2)

public class Foo
{

private int num;
public int getNum () { return num; }
public void setNum (int newValue) { num = newValue; }

}

James Tam

4. Be Cautious In The Use Of References (3)

public class Driver
{

public static void main (String [] argv)
{

Foo f1, f2;
f1 = new Foo ();
f1.setNum(1);

f2 = f1;
f2.setNum(2);

System.out.println(f1.getNum());
System.out.println(f2.getNum());

}
}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: First Version

public class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");
newAccount.setRating(0);
System.out.println(newAccount);

}
}

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: First Version (2)

public class CreditInfo
{

public static final int MIN = 0;
public static final int MAX = 10;
private int rating;
private StringBuffer name;
public CreditInfo ()
{

rating = 5;
name = new StringBuffer("No name");

}
public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = new StringBuffer(newName);

}

public int getRating () { return rating;}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: First Version (3)

public void setRating (int newRating)
{

if ((newRating >= MIN) && (newRating <= MAX))
rating = newRating;

}

public StringBuffer getName ()
{

return name;
}

public void setName (String newName)
{

name = new StringBuffer(newName);
}

•

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: First Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name.toString();
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
} // End of class CreditInfo

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Second Version

(All mutator methods now have private access).

public class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");

StringBuffer badGuyName;
badGuyName = newAccount.getName();

badGuyName.delete(0, badGuyName.length());
badGuyName.append("Bad guy on the Internet");

System.out.println(newAccount);
}

}

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (2)

public class CreditInfo
{

private int rating;
private StringBuffer name;

public CreditInfo ()
{

rating = 5;
name = new StringBuffer("No name");

}

public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = new StringBuffer(newName);

}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (3)

public int getRating ()
{

return rating;
}
private void setRating (int newRating)
{

if ((newRating >= 0) && (newRating <= 10))
rating = newRating;

}
public StringBuffer getName ()
{

return name;
}
private void setName (String newName)
{

name = new StringBuffer(newName);
}

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name.toString();
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Third Version

public class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");
String badGuyName;
badGuyName = newAccount.getName();

badGuyName = badGuyName.replaceAll("James Tam", "Bad guy on
the Internet");

System.out.println(badGuyName + "\n");
System.out.println(newAccount);

}
}

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (2)

public class CreditInfo
{

private int rating;
private String name;
public CreditInfo ()
{

rating = 5;
name = "No name";

}
public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = newName;

}
public int getRating ()
{

return rating;
}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (3)

private void setRating (int newRating)
{

if ((newRating >= 0) && (newRating <= 10))
rating = newRating;

}

public String getName ()
{

return name;
}

private void setName (String newName)
{

name = newName;
}

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name;
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
}

Design rules, software testing

James Tam

5. Be Cautious When Writing Accessor And Mutator
Methods

• When choosing a type for an attribute it comes down to
tradeoffs, what are the advantages and disadvantages of
using a particular type.

• In the previous examples:
–Using mutable types (e.g., StringBuffer) provides a speed advantage.
–Using immutable types (e.g., String) provides additional security

James Tam

Unit Testing

• Place objects in a know state
• Send a message to the object
• Compare the resulting state vs. the expected stated

http://junit.sourceforge.net/

http://www.junit.org/

Design rules, software testing

James Tam

Testing Programs

• There are many available, some of them for free (and many
commercial ones are available for free on a trial basis):

–JUnit: http://www.junit.org/ or http://junit.sourceforge.net/
–JTest: http://www.parasoft.com/

James Tam

• Some specialized testing classes must be downloaded.
• The location of the downloaded test classes must be either

permanantly set for the operating system (the ‘classpath’
variable) or at runtime:

>javac -classpath . ; c:/junit-4.8.1.jar SubscriptionTest.java

• Typically they test if a method’s operations are correct via
an assertion (assert if a method is correct: true/false).

How The Test Programs Work

The compressed jar file
containing the testing

classes is located in the C
drive. The name of the jar

file is “junit-4.8.1.jar”.

The name of the Driver
class used to run the tests
(the name of class being
tested is “Subscription”.

Must explicitly
include the current
working directory

Design rules, software testing

James Tam

Example Program To Be Tested

• A program that calculates the monthly cost of a
subscription.

• Given information: the total price of the submission and the
number of months that the subscription will last.

Example from: http://code.google.com

James Tam

Class Subscription

public class Subscription
{

private int price ; // subscription total price in euro-cent
private int length ; // length of subscription in months
public Subscription(int p, int n)
{

price = p ;
length = n ;

}
public int pricePerMonth()
{

double r = price / (double) length ;
return r ;

}
public void cancel()

{
length = 0 ;

}
}

Design rules, software testing

James Tam

Testing A Class

• A ‘Driver’ class must be written.
• The purpose of this class is to test the methods of another

class.
• The testing will occur by creating an instance of the class to

be tested and putting it into some known state.
• A message will be sent to the object to put it into another

state.
• An assert statement is used to determine if the new state is

correct.

James Tam

Setting Up The Driver Class

import org.junit.* ;
@ <name of the test case>
{

<code for the test case, including an assert statement>
}

Design rules, software testing

James Tam

Class SubscriptionTest

import org.junit.* ;
import static org.junit.Assert.* ;
public class SubscriptionTest
{

@Test public void test_returnEuro()
{

System.out.println("Test if pricePerMonth returns Euro...") ;
Subscription S = new Subscription(200,2) ;
assertTrue(S.pricePerMonth() == 2.0) ;

}

@Test public void test_roundUp()
{

System.out.println("Test if pricePerMonth rounds up correctly...") ;
Subscription S = new Subscription(200,3) ;
assertTrue(S.pricePerMonth() == 0.67) ;

}
}

James Tam

Compiling The Program

• Compile the Subscription class as you normally would.
• Compiling the Driver class:

>javac -classpath . ; c:/junit-4.8.1.jar SubscriptionTest.java

• Running the test
java -classpath .;c:/junit-4.8.1.jar org.junit.runner.JUnitCore Subscription

• Test results
FAILURES!!!
Tests run: 2, Failures: 2

Running the Junit test classes Name of the class to
be tested

Both assertions
failed (evaluated to
false)

Design rules, software testing

James Tam

You Should Now Know

•Some general design principles
–What constitutes a good or a bad design.

•How to automated testing programs such as JUnit can be
used to test the methods in your classes.

