
Programming: Lists

James Tam

Lists

In this section of notes you will be
introduced to new type of variable that
consists of other types.

James Tam

Types Of Variables

Python
variables

1. Simple
(atomic)

integer char boolean real Lists Strings

Tuples,

Dictionaries

Classes

2. Aggregate
(composite)

Programming: Lists

James Tam

Types Of Variables

Python
variables

1. Simple
(atomic)

integer char boolean real Lists Strings

Tuples,

Dictionaries

Classes

2. Aggregate
(composite)

James Tam

List

•In many programming languages a list is implemented as an
array.

•Python lists have many of the characteristics of the arrays in
other programming languages but they also have many other
features.

•This section will talk about the features of lists that are largely
common to arrays.

Programming: Lists

James Tam

Example Problem

•Write a program that will track the percentage grades for a class
of students. The program should allow the user to enter the
grade for each student. Then it will display the grades for the
whole class along with the average.

James Tam

Why Bother With Composite Types?

•For the full version of the example look in UNIX under:
/home/231/examples/lists/classList1.py

CLASS_SIZE = 5
stu1 = 0
stu2 = 0
stu3 = 0
stu4 = 0
stu5 = 0
total = 0
average = 0

stu1 = input ("Enter grade for student no. 1: ")
stu2 = input ("Enter grade for student no. 2: ")
stu3 = input ("Enter grade for student no. 3: ")
stu4 = input ("Enter grade for student no. 4: ")
stu5 = input ("Enter grade for student no. 5: ")

Programming: Lists

James Tam

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
print "Student no. 1:", stu1
print "Student no. 2:", stu2
print "Student no. 3:", stu3
print "Student no. 4:", stu4
print "Student no. 5:", stu5

James Tam

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
print "Student no. 1:", stu1
print "Student no. 2:", stu2
print "Student no. 3:", stu3
print "Student no. 4:", stu4
print "Student no. 5:", stu5

NO!

Programming: Lists

James Tam

What Were The Problems With
The Previous Approach?

•Redundant statements.
•Yet a loop could not be easily employed given the types of
variables that you have seen so far.

James Tam

What’s Needed

•A composite variable that is a collection of another type.
- The composite variable can be manipulated and passed throughout the

program as a single entity.
- At the same time each element can be accessed individually.

•What’s needed…an array / list!

Programming: Lists

James Tam

Creating A List (No Looping)

•This step is mandatory in order to allocate memory for the array.

•Omitting this step (or the equivalent) will result in a syntax
error.

•Format:
<array_name> = [<value 1>, <value 2>, ... <value n>]

•Example:
percentages = [0.0, 0.0, 0.0, 0.0, 0.0]

letters = [‘A’, ‘A’, ‘A’]

names = [“James Tam”, “Stacey Walls”, “Jamie Smyth”]

James Tam

Creating A List (With Loops)

• Step 1: Create a variable that is a reference to the list
• Format:

<array name> = []

• Example:
classGrades = []

Programming: Lists

James Tam

Creating A List (With Loops: 2)

•Step 2: Initialize the list with the elements
•General format:

- Within the body of a loop create each element and then append the new element on the end of
the list.

•Example:
for i in range (0, 5, 1):

classGrades.append (0)

James Tam

Revised Version Using A List

•For a full example look in UNIX under:
/home/231/examples/lists/classList2.py

CLASS_SIZE = 5
i = 0
total = 0
average = 0
classGrades = []

for i in range (0, CLASS_SIZE, 1):
classGrades.append(0)

Programming: Lists

James Tam

Revised Version Using A List (2)

for i in range (0, CLASS_SIZE, 1):
print "Enter grade for student no.", (i+1), ":",
classGrades[i] = input ()
total = total + classGrades[i]

average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
for i in range (0, CLASS_SIZE, 1):

print "Student no.", (i+1)

James Tam

Printing Lists

•Although the previous example stepped through each element of
the list in order to display it’s contents onscreen if you want to
quickly check the contents (and not worry about details like
formatting) then you can simply use a print statement as you
would with any other variable.

Example:
print classGrades

Output:
[10, 20, 30, 40, 50]

Programming: Lists

James Tam

Take Care Not To Exceed The Bounds Of The List

RAM
[0]
[1]
[2]
[3]

list OK
OK
OK
OK
???

list = [0, 1, 2, 3]
for i in range (0, 4, 1):

print list [i],

print
print list [4] ???

James Tam

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100

•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = raw_input (“Enter a value:”)

for i in range (0, SIZE, 1):
print myList [i]

Programming: Lists

James Tam

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100000

•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = raw_input (“Enter a value:”)

for i in range (0, SIZE, 1):
print myList [i]

James Tam

• To manipulate an array you need to first indicate which list is being accessed
- Done via the name of the list e.g., “print classGrades”

• If you are accessing a single element, you need to indicate which element that you
wish to access.
- Done via the list index e.g., “print classGrades[1]”

Accessing Data In The List

classGrades [0]

[1]

[2]
[3]
[4]

classGrades [0]

[1]

[2]
[3]
[4]

Using only the name of the
list refers to the whole list

Use the list name and a
subscript (the ‘index’) refers
to a single element

Programming: Lists

James Tam

Important Things To Keep In Mind

•(What you should now): Lists are a composite type that can be
decomposed into other types.

•Other important points:
- Copying lists
- Passing lists as parameters

James Tam

Copying Lists

•A list variable is not actually a list!
•Instead that list variable is actually a reference to the list.
•(This is important because if you use the assignment operator to
copy from list to another you will end up with only one list).

•Example:
- The full version can be found in UNIX under:
/home/231/examples/lists/copy1.py

list1 = [1,2]
list2 = [2,1]
print list1, list2

list1 = list2
print list1, list2

list1[0] = 99
print list1, list2

Programming: Lists

James Tam

Copying Lists (2)

•To copy the elements of one list to another a loop is needed to
copy each successive elements.

•Example:
- The full version can be found in UNIX under:
- /home/231/examples/lists/copy2.py

list1 = [1,2,3,4]
list2 = []

for i in range (0, 4, 1):
list2.append(list1[i])

print list1, list2
list1[1] = 99
print list1, list2

James Tam

Parameter Passing

•What you’ve seen so far:
- Passing a parameter into a function makes a local copy of the value passed
in.

- This is referred to as PASS BY VALUE.
- Changes made to the parameter will only be made to the local copy and not
the original.

Programming: Lists

James Tam

Parameter Passing (2)

•Passing lists into functions is done using a different mechanism
- When a list is passed into the function a local reference refers to the original list.
- Example:
- The full version can be found in UNIX under:

/home/231/examples/lists/parameter1.py

def fun (list):
list[0] = 99
print list

def main ():
list = [1,2,3]
print list
fun (list)
print list

main ()

- Changes made to the local reference will change the original list.
- This parameter passing mechanism is referred to as PASS BY REFERENCE (the

local reference refers to the original list)

James Tam

Parameter Passing (3)

•Exception: if the local reference is assigned to another list then it will
obviously no longer refer to the original list.

•(Effect: changes made via the local reference will change the local list and
not the original that was passed into the function).

•Example:
•The full version of the program can be found in UNIX under:
/home/231/examples/lists/parameter2.py

def fun (list):
list = [3,2,1]
print list

def main ():
list = [1,2,3]
print list
fun (list)
print list

main ()

Programming: Lists

James Tam

When To Use Lists Of Different Dimensions

•Determined by the data – the number of categories of information
determines the number of dimensions to use.

• Examples:
•(1D array)

-Tracking grades for a class
-Each cell contains the grade for a student i.e., grades[i]
-There is one dimension that specifies which student’s grades are being accessed

•(2D array)
-Expanded grades program
-Again there is one dimension that specifies which student’s grades are being
accessed

-The other dimension can be used to specify the lecture section

One dimension (which student)

James Tam

When To Use Lists Of Different Dimensions (2)

•(2D list continued)

Student

Lecture
section

:

L01

L02

L03

L0N

L05

L04

Third
student

…
Second
student

First
student

Programming: Lists

James Tam

When To Use Lists Of Different Dimensions (3)

•(2D list continued)
•Notice that each row is merely a 1D list
•(A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]
[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns

Rows

•L06

•L05

Important:

List elements are
specified in the order of
[row] [column]

James Tam

Creating And Initializing A Multi-Dimensional List
In Python

General structure
<array_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],
: : :
: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Programming: Lists

James Tam

Creating And Initializing A Multi-Dimensional List
In Python (2)

Example:
matrix = [[0, 0, 0],

[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]

for r in range (0, 4, 1):
for c in range (0, 3, 1):

print matrix [r][c],
print

James Tam

Creating And Initializing A Multi-Dimensional List
In Python (3)

•General structure (Using loops):
• Create a variable that refers to a 1D list. The outer loop traverses the rows. Each
iteration of the outer loop creates a new 1D list. Then the inner loop traverses the
columns of the newly created 1D list creating and initializing each element in a
fashion similar to how a single 1D list was created and initialized.

•Example (Using loops):
aGrid = [] # Create a reference to the list
for r in range (0, 3, 1): # Outer loop runs once for each row

aGrid.append ([]) # Create a row (a 1D list)
for c in range (0, 3, 1): # Inner loop runs once for each column

aGrid[r].append (" ") # Create and initialize each element (1D list)

Programming: Lists

James Tam

Example 2D List Program: A Character-Based Grid

•You can find the full program in UNIX under:
/home/231/examples/lists/grid.py

import sys
import random

MAX_ROWS = 4
MAX_COLUMNS = 4
NO_COMBINATIONS = 10

James Tam

A Character-Based Grid (2)

def generateElement (temp):
anElement = '?'
if (temp >= 1) and (temp <= 6):

anElement = ' '
elif (temp >= 7) and (temp <= 9):

anElement = '*'
elif (temp == 10):

anElement = '.'
else:

print "<< Error with the random no. generator.>>"
print "<< Value should be 1-10 but random value is ", temp
anElement = '!'

return anElement

Programming: Lists

James Tam

A Character-Based Grid (3)

def initialize (aGrid):
for r in range (0, MAX_ROWS, 1):

for c in range (0, MAX_COLUMNS, 1):
temp = random.randint (1, NO_COMBINATIONS)
aGrid[r][c] = generateElement (temp)

James Tam

A Character-Based Grid (4)

def display (aGrid):
for r in range (1, MAX_ROWS, 1):

for c in range (1, MAX_COLUMNS, 1):
sys.stdout.write(aGrid[r][c])

print

def displayLines (aGrid):
for r in range (0, MAX_ROWS, 1):

print " - - - -"
for c in range (0, MAX_COLUMNS, 1):

sys.stdout.write ('|')
sys.stdout.write (aGrid[r][c])

print '|'
print " - - - -"

Programming: Lists

James Tam

A Character-Based Grid (5)

• # MAIN FUNCTION
aGrid = []
for r in range (0, MAX_ROWS, 1):

aGrid.append ([])
for c in range (0, MAX_COLUMNS, 1):

aGrid[r].append (" ")

initialize(aGrid)
print "Displaying grid"
print "==============="

display (aGrid)
print
print "Displaying grid with bounding lines"
print "==================================="
displayLines (aGrid)

James Tam

Lists Can Be Treated As A Set

•That means that the ‘in’ operator can be used in conjunction
with lists.

•Branching
list = ["bob", "alice", "mary", "tom", "dick", "harry"]
if ("tom" in list):

print "tom is in"

•Loops
list = [123, 43, 35, 1, 888, 666, 777]
temp = 0
for temp in list:

print temp

Programming: Lists

James Tam

You Should Now Know

•Why and when a list should be used
•How to create and initialize a list
•How to access or change the elements of a list
•Issues associated with copying lists and passing lists as
parameters into functions

•When to use lists of different dimensions
•How to use the 'in' operator in conjunction with lists

James Tam

After This Section You Should Now Know

• How to write the definition for a function
- How to write a function call

• How to pass information to and from functions via parameters
and return values

• How and why to declare variables locally
• How to test functions and procedures
• How to design a program from a problem statement

- How to determine what are the candidate functions
- How to determine what variables are needed and where they need to be

declared
- Some approaches for developing simple algorithms (problem solving

techniques)

