
Programming: File input and output

James Tam

Introduction To Files In
Python

In this section of notes you will learn
how to read from and write to files in
your programs.

James Tam

Why Bother With Files?

•Many reasons:
- Too much information to input all at once
- The information must be persistent (RAM is volatile)
- Data entry of information is easier via a text editor rather than through the
computer program that you write.

- Etc.

Programming: File input and output

James Tam

What You Need In Order To Read
Information From A File

1. Open the file and associate the file with a file variable
2. A command to read the information

James Tam

1. Opening Files

Prepares the file for reading:
A. Links the file variable with the physical file (references to the file

variable are references to the physical file).
B. Positions the file pointer at the start of the file.

Format:1

<file variable> = open (<file name>, “r”)

Example:
(Constant file name)
inputFile = open ("data.txt ", "r")

OR
(Variable file name: entered by user at runtime)
filename = raw_input ("Enter name of input file: ")
inputFile = open (filename, "r")

1 Assumes that the file is in the same directory/folder as the Python program.

Programming: File input and output

James Tam

B. Positioning The File Pointer

A

B

C

B

B

:

letters.txt

James Tam

2. Reading Information From Files

Typically reading is done within the body of a loop
Format:

for <variable to store a string> in <name of file variable>:
<Do something with the string read from a file>

Example:
for line in inputFile:

print line

Programming: File input and output

James Tam

Reading From Files: Putting It All Together

The complete online version of the program can be found under
the name: grades.py:

inputFileName = raw_input ("Enter name of input file: ")
inputFile = open (inputFileName, "r")
print "Opening file", inputFileName, " for reading."

While we haven't read past the end of the file continue reading from
it.
for line in inputFile:

print line

inputFile.close()
print "Completed reading of file", inputFileName,

James Tam

An Alternate Method Of Getting Input

•Command line arguments: inputs given to a program as it’s run.
•The complete online version of the program can be found under
the name: grades.py:

•Example execution: “python command_line.py first_input
2ndInput”

<< Filename: command_line1.py >>
import sys
def main ():

first = sys.argv[0] # Name of program (command_line.py)
second = sys.argv[1] # First input (first_input)
third = sys.argv[2] # Second input (2ndInput)

main ()

Programming: File input and output

James Tam

An Alternate Method Of Getting Input (2)

•The complete online version of the program can be
found under the name: command_line2.py

<< Filename: command_line2.py >>
import sys
def main ():

arguments = sys.argv[0:]
for argument in arguments:

print argument
main ()

James Tam

What You Need To Write Information To A File

1. Open the file and associate the file with a file variable
2. A command to write the information

Programming: File input and output

James Tam

1. Opening The File

Format:
<name of file variable> = open (<file name>, “w”)

Example:
(Constant file name)
outputFile = open (“gpa.txt”, "w")

(Variable file name: entered by user at runtime)
outputFileName = raw_input ("Enter the name of the output file to record

the GPA's to: ")
outputFile = open (outputFileName, "w")

James Tam

3. Writing To A File

Format:
outputFile.write (temp)

Example:
Assume that temp contains a string of characters.
outputFile.write (temp)

Programming: File input and output

James Tam

Writing To A File: Putting It All Together

•The complete online version of the program can be found under
the name: grades2.py

inputFileName = raw_input ("Enter the name of input file to read the
grades from: ")
outputFileName = raw_input ("Enter the name of the output file to
record the GPA's to: ")

Open file for reading
inputFile = open (inputFileName, "r")
outputFile = open (outputFileName, "w")

Update user on what is happening.
print "Opening file", inputFileName, " for reading."
print "Opening file", outputFileName, " for writing."

James Tam

Writing To A File: Putting It All Together (2)

gpa = 0
for line in inputFile:

if (line[0] == "A"):
gpa = 4

elif (line[0] == "B"):
gpa = 3

elif (line[0] == "C"):
gpa = 2

elif (line[0] == "D"):
gpa = 1

elif (line[0] == "F"):
gpa = 0

else:
gpa = -1

Programming: File input and output

James Tam

Writing To A File: Putting It All Together (3)

temp = str (gpa)
temp = temp + '\n'
print letter[0], '\t', gpa
outputFile.write (temp)

inputFile.close ()
outputFile.close ()
print "Completed reading of file", inputFileName,
print "Completed writing to file", outputFileName,

James Tam

Another Example Reading From A File Into A
String

•The complete online version of the program can be
found under the name: file_list.py

inputFile = open ("input.txt", "r")
for line in inputFile:

i = 0
for ch in line:

print i, ch,
i = i + 1

print

Programming: File input and output

James Tam

Building An Arbitrary Sized List By
Reading From File

•The complete online version of the program can be
found under the name: file_list2.py

inputFile = open ("input2.txt", "r")

myList = []
for line in inputFile:

myList.append(line)

inputFile.close()

James Tam

Building An Arbitrary Sized List By
Reading From File (2)

row = 0
for line in myList:

if (row < 10):
print row, line,

else:
temp = row + 55
ch = chr(temp)
print ch, line,

row = row + 1

Programming: File input and output

James Tam

You Should Now Know

•How to open a file for reading
•How to open a file a file for writing
•The details of how information is read from and written to a file
•How to close a file and why it is good practice to do this
explicitly

•What is a command line argument
•How to read and use command line arguments
•How to read from a file of arbitrary size
•How to build an arbitrary sized list by reading the information
from a file

