Classes and Objects

You will learn how to define new types
of variables.

James Tam

Composite Types: Review

*Ones that you should be familiar with now:
- Strings
- Lists
- Tuples
- Dictionaries
*Lists can be used to track relatively simple information e.g., grades, text-
based virtual worlds.
«It is less effective at storing more complex information (e.g., client list) — as
you will see.
*Previous example: tracking client information
firstClient = ["James Tam”
"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Giriffin”
"(708)123-4567",
"griffinp@familyguy.com"”,
100]

James Tam

Composite Types: Review (2)

*If a large number of composite types need to be tracked (e.g.,
many clients) then you can employ lists of lists.

*(This means that each list element consists of another list).

Example: List Of Lists

*The full online example can be found in under the name:
list_of_lists.py

MAX =4

def initialize (myClients):
foriin range (0, MAX, 1):
temp = [(i+1),
“default name”,
"(111)111-1111",
"foo@bar.com",
0]
myClients.append(temp)

Example: Lists Of Lists (2)

def display (myClients):
foriin range (0, MAX, 1):
print myClientsi]

MAIN

myClients =[]
initialize (myClients)
display(myClients)

Some Drawbacks Of Using A List

*Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
temp = [(i+1),
“default name”,
"(111)111-1111", hat is this?
"foo@bar ;

*[s there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow

alphabetic information to be entered in the phone number field.

Classes

*Can be used to define a generic template for a new non-
homogeneous composite type.

*[t can label and define more complex entities than a list.

*This template defines what an instance or example of this new
composite type would consist of but it doesn’t create an
instance.

James Tam

Defining A Class

ote the convention: The
first letter is capitalized.

*Format:

class <N@me of the class>:
name of first field = <defdult value>

name of second figid = <default value>

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

Describes what information
that would be tracked by a
“Client” but doesn’t actually
create a client in memory

James Tam

Creating An Instance Of A Class

*Format:
<reference name> = <name of class> ()

*Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That

Class
*Defining a class *Creating a class
- A template that describes that - Instances of that class
class: how many fields, what type (instantiations) which can take on
of information will be stored by different forms.

each field, what default
information will be stored in a
field.

James Tam

Accessing And Changing The Fields

*Format:
<reference name>.<field name> # Accessing value
<reference name>.<field name> = <value> # Changing value

Example:
aClient.name = "James"

James Tam

The Client List Example Implemented Using Classes

*The full version can be found under the name: client.py

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

James Tam

The Client List Example Implemented
Using Classes (2)

def main ():
firstClient = Client ()
firstClient.name = "James Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print firstClient.name
print firstClient.phone
print firstClient.email
print firstClient.purchases

main ()

James Tam

What Is The Benefit Of Defining A Class

« It allows new types of variables to be declared.

* The new type can model information about most any arbitrary
entity:
- Car
- Movie
- Your pet
- A biological entity in a simulation
- A “critter’ (e.g., monster, computer-controlled player) a video game
- An ‘object’ (e.g., sword, ray gun, food) in a video game
- Etc.

James Tam

What Is The Benefit Of Defining A Class (2)

*Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases =0

firstClient = Client ()
print firstClient. middleName

James Tam

What Is The Benefit Of Defining A Class (2)

*Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com”
purchases =0

firstClient = Client ()

Me Tr!ere is no field by
this name

James Tam

Class Methods

*Somewhat similar to the other composite types, classes can have
functions associated with them.
-E.g.,
filename = "foo.txt"
name, suffix = filename.split(".")
*Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

*Functions that are associated with classes are referred to as
methods.

James Tam

Defining Class Methods

Format:
class <classname>:
def <method name> (self, <other parameters>):
<method body>

Example:
class Person:
name ="l have no name :("
def sayName (self):
print "My name is...", self.name

James Tam

Defining Class Methods: Full Example

*The full example can be found online under the name: person.py

class Person:

name ="l have no name :("
def sayName (self):
print "My name is...", self.name

def main ():

aPerson = Person ()
aPerson.sayName ()
aPerson.name = "Big Smiley :D"
aPerson.sayName ()

main ()

James Tam

What Is The ‘Self’ Parameter

*When defining/call methods of a class there is always at least
one parameter.

*This parameter is called the ‘self’ reference which allows an
object to access it’s attributes inside it’s methods.

*It’s needed to distinguish the attributes of different objects of

the same clas

*Example:
bart = Person (

lisa = Person ()

lisa.sayName (

S.

/

|, def sayName ():

print "My name is...",’\name\,

r
|
|
|
Whose name is this?
(This won't work)

James Tam

The Self Parameter: A Complete Example

*The name of the full online example is: person2.py

class Person:
name ="l have no name :("
def sayName (self):
print "My name is...", self.name

def main ():
lisa = Person ()
lisa.name = "Lisa Simpson"
bart = Person ()
bart.name = "I'm Bart Simpson, who the h*ck are you???1!"

lisa.sayName ()
bart.sayName ()

main ()

James Tam

Initializing The Attributes Of A Class

*Classes have a special method that can be used to initialize the
starting values of a class to some specific values.

*This method is automatically called whenever an object is

created. No spaces here

*Format:
class <Cla me>
def __imft & (self, <other parameters>):
<body of the method>
*Example:
class Person:
name ="

def __init__ (self):
self.name = "No name"

James Tam

Full Example: Using The “Init” Method

*The name of the full online example is: init_method.py

class Person:
name ="
def __init__ (self):
self.name ="l am the nameless bard"

def main ():
finder = Person ()
print finder.name

main ()

Constructor: A Special Method

*Constructor method: a special method that is used when
defining a class and it is automatically called when an object of
that class has been created.

-E.g., aPerson = Person () # This calls the constructor

*In Python this method is named ‘init’.

*Other languages may require a different name for the syntax but
it serves the same purpose (initializing the fields of an objects as
it’s being created).

*This method never returns any values.

Default Parameters

*Methods such as ‘init” can be defined so that if parameters aren’t
passed into them then default values can be assigned.

*Example:
def __init__ (self, name ="l have no name"):
& J

This method can be called
either when a personalized
name is given or if the name
is left out.

*Method calls (to ‘init’), both will work
smiley = Person ()
jt = Person ("James")

James Tam

Default Parameters: Full Example

*The name of the full online example is: init_method2.py

class Person:
name ="
def __init__ (self, name = "I have no name"):
self.name = name

def main ():
smiley = Person ()
print "My name is...", smiley.name
jt = Person ("James")
print "My name is...", jt.name

main ()

James Tam

Modules: What You Should Know (Tutorial)

*In Python a module contains a part of a program in a separate
file.

*In order to access a part of a program that resides in another file
you must ‘import’ it.

*Example:
File: fun.py File: main.py
def fun (): from fun import *!
print "I'm fun!"
def main ():
fun ()
main ()
1 Import syntax:
| From <filename> import <function names> James Tam

Quick Review Modules: Complete Example

*The complete example is compressed into the file “modules.zip”.

*Extract both files into the same folder/directory and run the
‘main’ method (type: “python main.py’)

<< In file main.py >>
from fun import fun1, fun2

def main ():
fun1 ()
fun2 ()

main ()

James Tam

Quick Review Modules: Complete Example (2)

<<In file fun.py >>
def fun1 ():
print "I'm fun1!"

def fun2 ():
print "I'm fun2!"

James Tam

Modules And Classes

*Class definitions are frequently contained in their own module.

*A common convention is to have the module (file) name match
the name of the class.

Filename: Person.py

def Person:
pass

James Tam

Modules And Classes: Complete Example

*The complete example is compressed into the file
“modules2.zip”.

*Extract both files into the same folder/directory and run the
‘main’ method which is in the file called “driver.py” (type:
“python driver.py”)

<< File driver.py >>
from Foo import *

def main ():
aFoo = Foo ()
aFoo.hello ()

main ()

When importing modules containing class definitions the syntax is:

From <filename> import <classes to be used in this module> James Tam

Modules And Classes: Complete Example (2)

<< File Foo.py >>
class Foo:
def hello (self):
print "Hello! Sup?! Guten tag/morgen/aben! Buenos! Wei! Ohio! \
Shalom! Bonjour! Salaam alikum!"

James Tam

You Should Now Know

*How to define an arbitrary composite type using a class

*What are the benefits of defining a composite type by using a
class definition over using a list

*How to create instances of a class (instantiate)

*How to access and change the attributes (fields) of a class
*How to define methods/call methods of a class

*What is a ‘self’ parameter and why is it needed

*What is a constructor, when it is used and why is it used
*How to write a method with default parameters

*How to divide your program into different modules

