
Multiple Choice Questions
There are 20 multiple choice questions on the final exam. Make sure you bring an HB or darker
pencil to answer these questions on a bubble sheet. To ensure you do well in this section, make
sure you are able to do the following:

1. Identify the number of times (the body of) a loop will execute.
2. Know the basic milestones in the history of Computer Science since the 1940s as

identified in class.
3. Understand the challenges faced by the various fields in Computer Science, as discussed

in class.
4. Understand the differences and similarities between a procedural and object-oriented

problem solving approach.
5. Know the various error types that can be encountered while programming and when in

the coding cycle each error type is encountered.
6. Understand the difference between the coding cycle when using an interpreted language

(a language with a virtual machine) and a compiled language.
7. Given a set of symbols, know the number of bits that would be needed to encode all

symbols.
8. Know the commonly used encoding schemes for characters, integers and floating point

numbers.
9. Able to evaluate arithmetic expression contain a mix of arithmetic operators and types of

numbers.
10. Able to identify when changes to a list made inside a function are also visible outside the

function.
11. Able to identify the scope of a variable. The levels of variable scope we have talked

about during the semester are: local, global and class.

The following are examples of the types of multiple choice questions you can expect.

1. Given that you know the ASCII code for the character ‘A’ is 65 then what will be the

ASCII code for the character ‘F’
a. 65
b. 66
c. 69
d. 70
e. 71

2. In computer programs real numbers are stored in the floating point form. Which of the

following is NOT one of the three components of a floating point number?
a. Sign
b. Mantissa
c. Exponent
d. Decimal point

3. Which of the following people were part of the team that worked on the ABC

(computer)?
a. Allan Turing
b. Bill Gates
c. Clifford Berry
d. Steven Jobs
e. None of these people were part of the team that worked on this computer.

Written Answer Questions
There is a total of 13 written answer questions on the final exam. You may use either a pen or
pencil to answer these questions in the space provided in the exam booklet. To ensure you do well
in this section, make sure you are able to do the following:

 1. Trace a nested loop. The following are two examples of nested loops.
 i = 0
 j = 0

 while (i < 5):
 while (j < 4):
 print '(' + i + ',' + j + ') ',
 j = j + 1
 i = i + 1
 j = 0
 print '\n'

 def fun1(twodlist) :
 file = open('temp.txt', 'r')
 lines = file.readlines()
 file.close()
 wordlist = []
 for line in lines :
 words = line.split()
 for word in words :
 if word not in wordlist :
 wordlist.append(word)
 return wordlist

 if the file contains the following text (Coleridge's "Rime of the Ancient Mariner"),
what will the function return?

 I looked upon the rotting sea,
 And drew my eyes away;

 I looked upon the rotting deck,
 And there the dead men lay.

 2. Design a conditional (if statement) See the midterm for examples on this.

 3. For each of the following cases, identify which is an explicit cast and which is an

implicit cast.
 int(x)
 17 / 1.0
 str(15.0)
 print 15.0

 4. Design a test suite given a function definition. For example, for each of the following

functions, provide a set of tests that would thoroughly test the function.
Name: moveup
Parameters: ycoord, amount
Pre-conditions: All parameters are numbers
Post-conditions: The function will return a modified y-coordinate, such that the input y-
coordinate is decreased by amount.

Name: is_all_caps
Parameters: str
Pre-conditions: The parameter is of type string
Post-conditions: The function will return true if all characters in str are alphabetic upper
case character, false otherwise.

 5. List strategies that you use when debugging and strategies that you use when
testing.

 6. Able to write code that uses code from other modules.

 7. Write functions that parse and manipulate strings. The following are two functions that
you should be able to write that parse strings.

 � Write a function that takes a single string parameter. The function should return
this string but each comma (,) in the string should be replaced by a colon (:).

 � Write a function that takes two string parameter str and sub. The function should
return the string str with all occurrence of sub removed.

 8. Able to manipulate lists. The following are two functions that you should be able to
write that manipulate lists.

 � Write a function that takes two parameters, the first a list of strings and the
second a string called sub. You function should remove from the list all those
string that have sub as a substring.

 � Write a function takes as parameters a list and an index. The function should
move that item located at the specified index to the end of the list.

 9. Able to trace exception handling code. For example, write code that will cast a variable x
to an integer and print succeeded if the cast was successful and that prints 'can't convert
to an integer' if the cast was not successful. Use exceptions to determine if a cast was
successful or not.

 10. Able to read from and write to files. For example, write a function that takes two
parameters, the first a filename, the second an integer count. the lines (the number
specified by second parameter) from the input file.

 11. Given a problem statement, design functions that would be helpful in solving the

problem. For this type of question, only the function definition (name, parameter list,
data returned and possible interactions with the user). Do not provide any
implementation of these function. A possible problem is as follows:

Create a program that will read marks, expressed as letter grades, from a file. The user
should be prompted for the filename. Your program will then create a bar chart based on
the marks. Each bar will appear as a rectangle in Quickdraw (or some other screen). The
larger the number of students have a particular grade, the higher the rectangle should be
on the screen.

 12. Given code that defines a class, able to identify the different components of this class.
This includes the constructor, methods and instance variables. You must also be able to
create an instance of this class and manipulate this instance, including call methods on
the instance and passing the instance as a variable and returning an instance from a

function.

For the Time class defined below (based on the Time class defined in your text 'How to
think like a Computer Scientist) write the functions

 � now() which creates an instance of Time where the time is set of 11:12:13 and
returns this instance.

 � info(time1, time2) which takes two instance of Time (time1 and time2) and
which prints the object with the earliest time to the console first and the object
with the later time to the console second. Both times should printed in seconds.

class Time:
 def __init__(self, hours, minutes, seconds):
 self.hours = hours
 self.minutes = minutes
 self.seconds = seconds

 def after(self, time2):
 if self.hour > time2.hour:
 return True
 if self.hour < time2.hour:
 return False
 if self.minute > time2.minute:
 return True
 if self.minute < time2.minute:
 return False
 if self.second > time2.second:
 return True
 return False

 def convertToSeconds(self):
 minutes = self.hours * 60 + self.minutes
 seconds = minutes * 60 + self.seconds
 return seconds

