Introduction To Java Programming

You will study the process of creating
Java programs and constructs for
input, output, branching, looping,

working with arrays as well some of
the history behind Java’s
development.

James Tam

Java: History

*Computers of the past

James Tam

Java: History (2)

*The invention of the microprocessor revolutionized computers

Intel microprocessor

Commodore Pet microcomputer

James Tam

Java: History (3)

*It was believed that the logical next step for microprocessors
was to have them run intelligent consumer electronics

James Tam

Java History (4)

b

*Sun Microsystems funded an internal research project “Green’
to investigate this opportunity.
- Result: A programming language called “Oak”

b Y

Blatant advertisement: James Gosling was a
graduate of the U of C Computer Science
program.

Wav file from “The Simpsons” © Fox, Image from the website of Sun Microsystems James Tam

Java History (5)

- Problem: There was already a programming language called Oak.
- The “Green” team met at a local coffee shop to come up with

another name...
eJava!

James Tam

Java: History (6)

*The concept of intelligent devices didn’t catch &
on.

*Project Green and work on the Java language
was nearly canceled.

James Tam

Java: History (7)

*The popularity of the Internet resulted in Sun’s re-focusing of
Java on computers.

*Prior to the advent of Java, web pages allowed you to download
only text and images.

Your computer at home Server containing a
running a web browser web page

e 5 User clicks on a link _)
m Images and text get ' m
u T downloaded !
~ <Ai—

James Tam

Java: History (8)

Java enabled web browsers allowed for the downloading of
programs (Applets).

«Java is still used in this context today:
- Facebook
- Hotmail

Your computer at home Server containing
running a web browser aweb page

User clicks on a link

Java Applet downloaded

Java version of the Game of Life: http://www.bitstorm.org/gameoflife/

Online checkers: http://www.darkfish.com/checkers/index.html

James Tam

Java: Write Once, Run Anywhere

*Consequence of Java’s history:
platform-independence

e @
' Click on link to Applet

Mac user running Netscape

Web page stored on Unix server

Virtual machine translates byte code to e
native Mac code and the Applet is run Byte code is downloaded |
e L
Al
Windows user running Internet Explorer
Byte code
(part of web

page)

James Tam

Java: Write Once, Run Anywhere

*Consequence of Java’s history:
platform-independent

Mac user running Netscape Web page stored on Unix server

TAIPEISTIMES B

Click on link to Applet

Byte code is downloaded

Windows user running Internet Explorer

Virtual machine translates byte code to

native Windows code and the Applet is run

James Tam

Java: Write Once, Run Anywhere (2)

*But Java can also create standard (non-web based) programs

i s

Dungeon Master (Java version)

http://www.cs.pitt.edu/~alandale/dmjava/ James Tam

Java: Write Once, Run Anywhere (3)

Java has been used by large and reputable companies to create
serious stand-alone applications.

*Example:

-Eclipse!: started as a programming environment created by IBM for
developing Java programs. The program Eclipse was itself written in Java.

- B adel Stucke - sty venligumd - Erigee Platform

¥ =0l
Fln £ fiegas Sewh et B fon Wrde feb
Ci=lwi | M |- R0 & 1 W Gt st
Q- e G- (B[e
SR e e
Bwere 1% S0 et | ehwvasn | O
1 L AR)
e e Fg..;..:‘m
= B e 5001 Centiisets .
3 s mcni || ay
7 ' I
Gl e &
.jram» >
s pressragl |
"

e
[e
o] wetnamioem |
e
—

g Tetaback

e
s e
” isuun packag,

1 For more information: http://www.eclipse.org/downloads/

James Tam

Compiled Programs With Different
Operating Systems

Windows =
compiler

z———FExecutable (Windows)

Mac OS Q *
Computer compiler - [. .}
program \ ‘ j

—Executable (Mac)

UNIX
compiler

%»Executable (UNIX)

James Tam

A High Level View Of Translating/Executing Java

Programs
Filename.java Java compiler Filename.class
(javac)
Java
Java program , byteco_de
(generic
binary)

James Tam

A High Level View Of Translating/Executing Java
Programs (2)

Machine language
instruction (UNIX)

Filename.class Java interpreter

Machine language

Java (java) instruction (Windows)

bytecode

(generic —

binary) Machine language
instruction (MAC)

James Tam

Which Java?

«Java 6 JDK (Java Development Kit), Standard Edition includes:
- JDK (Java development kit) — for developing Java software (creating
Java programs.
- JRE (Java Runtime environment) — only good for running pre-created

Java programs.
«Java Plug-in — a special version of the JRE designed to run through web
browsers.

http://java.sun.com/javase/downloads/index.jsp James Tam

Smallest Compilable And Executable Java Program

public class Smallest

{

public static void main (String[] args)

{
b

James Tam

Creating, Compiling And Running Java Programs
On The Computer Science Network

Java program //Type it in with the text editor of your choice

filename.java -

(Unix file)
\J ava compiler
- ! a 1 E Java byte code

_- filename.class

-~

To corﬁpile the program at the (UNIX file)

command line type "javac
filename.java™
Java Interpreter
-
To run the interpreter, at ——~
the command line type

"java filename" James Tam

Compiling The Smallest Java Program

Smallest.java

public class Smallest Type “javac
{ // Smallest.java”
public static void main (String[] args) ,/
{
1
)
javac
\Smallest.class
(Java byte code)
10000100000001000

00100100000001001

James Tam

Running The Smallest Java Program

Smallest.class
(Java byte code)

10000100000001000
00100100000001001

e
Type “java Smallest”

James Tam

Documentation / Comments

Java

* Multi-line documentation
/* Start of documentation
*/ End of documentation

*Documentation for a single line
//Everything until the end of the line is a comment

James Tam

Java Qutput

*Format:
System.out.printin(<string or variable name one> + <string or variable
name two>..);

*Examples (Assumes a variable called ‘num’ has been declared.):
System.out.printin("Good-night gracie!");
System.out.print(num);
System.out.printin("num=" +num);

James Tam

Output : Some Escape Sequences For Formatting

Escape sequence | Description

\t Horizontal tab
\r Carriage return
\n New line

\”? Double quote

\\ Backslash

James Tam

Declaring Variables

*Format:
-It’s the same structure that’s used with ‘C’ variables.

James Tam

Some Built-In Types Of Variables In Java

Type Description

byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number

double 64 bit signed real number

char 16 bit Unicode character

boolean 1 bit true or false value

String A sequence of characters between double
quotes (“)

James Tam

Location Of Variable Declarations

public class <name of class>

{
public static void main (String[] args)
{
Il Local variable declarations occur here
<< Program statements >>
}
}
Java Constants
Format:
final <constant type> <CONSTANT NAME> = <value>;
Example:

final int SIZE = 100;

James Tam

Location Of Constant Declarations

public class <name of class>

{
public static void main (String[] args)
{
Il Local constant declarations occur here
// Local variable declarations
< Program statements >>
}
}
James Tam
Java Keywords
abstract boolean break byte case catch char
class const continue default do double else
extends final finally float for goto if
implements import instanceof int interface long native
new package private protected public return short
static super switch synchronized this throw throws
transient try void volatile while

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator |Description Associativity
level
1 expression++ | Post-increment Right to left
expression-- | Post-decrement
2 ++expression | Pre-increment Right to left
--expression | Pre-decrement
+ Unary plus
- Unary minus
! Logical negation
~ Bitwise complement
(type) Cast

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
3 * Multiplication Left to right
/ Division
% Remainder/modulus
4 + Addition or String Left to right
concatenation
_ Subtraction
5 << Left bitwise shift Left to right
>> Right bitwise shift

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
6 < Less than Left to right
<= Less than, equal to
> Greater than
>= Greater than, equal to
7 == Equal to Left to right
I= Not equal to
8 & Bitwise AND Left to right
9 A Bitwise exclusive OR Left to right

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level

10 | Bitwise OR Left to right

11 && Logical AND Left to right

12 I Logical OR Left to right

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
13 = Assignment Right to left
+= Add, assignment
-= Subtract, assignment
*= Multiply, assignment
/= Division, assignment
%= Remainder, assignment
&= Bitwise AND, assignment
N= Bitwise XOR, assignment
|= Bitwise OR, assignment
<<= Left shift, assignment
>>= Right shift, assignment

James Tam

Post/Pre Operators

public class Example1

{

public static void main (String [] args)

{
int num = 5;
System.out.printin(num);
num++;
System.out.printin(num);
++num;
System.out.printin(num);

System.out.printin(++num);
System.out.printin(num++);

James Tam

Getting Text Input

*You can use the pre-written methods (functions) in the Scanner
class.

*General structure:

import java.util.Scanner;

main (String [] args)
{

Scanner <name of scanner> = new Scanner (System.in);
<variable> = <name of scanner> .<method> ();

}

James Tam

Getting Text Input (2)

*Example:
import java.util.Scanner;

public class Mylnput

public static void main (String [] args)
{
String str1;
int num1;
char ch;
Scanner in = new Scanner (System.in);
System.out.print ("Type in an integer: ");
num1 = in.nextint ();
System.out.print ("Type in a line: ");
in.nextLine ();
str1 = in.nextLine ();
System.out.printin ("num1:" +num1 +"\t str1:" + str1);

James Tam

Useful Methods Of Class Scanner!

*nextint ()
*nextLong ()
*nextFloat ()
*nextDouble ()

1 Online documentation: http://java.sun.com/javase/6/docs/api/

James Tam

Decision Making In Java

+Java decision making constructs
-if
-if, else
-if, else-if
-switch

James Tam

Decision Making: Logical Operators

Logical Operation

C

Java

AND

&&

&&

OR

NOT

James Tam

Format:

if (Boolean Expression)

Body

Example:
if (x!1=y)

Decision Making: If

System.out.printin(“*X and Y are not equal”);

if (x> 0) && (y > 0))
{

System.out.printin("X and Y are positive");

James Tam

Decision Making: If, Else

Format:
if (Boolean expression)
Body of if
else
Body of else

Example:
if (x <0)

System.out.println(“X is negative”);
else

System.out.println(“X is non-negative”);

James Tam

If, Else-If

Format:
if (Boolean expression)
Body of if
else if (Boolean expression)
Body of first else-if

else if (Boolean expression)
Body of last else-if

else
Body of else

James Tam

If, Else-1f (2)

Example:
if (gpa == 4)
{
System.out.printin("A");
}
else if (gpa == 3)
{
System.out.printin("B");
}
else if (gpa == 2)
{
System.out.printin("C");
}

If, Else-If (2)

else if (gpa == 1)

{
System.out.printin("D");

System.out.printin("Invalid gpa");

Alternative To Multiple Else-If’s: Switch (2)

Format (character-based switch):
switch (character variable name)

{

case ‘<character value>’:
Body
break;

case ‘<character value>’:
Body
break;

default:
Body

}

1 The type of variablein the brackets can be a byte, char, short, int or long

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format (integer based switch):
switch (integer variable name)

{

case <integer value>:
Body
break;

case <integer value>:
Body
break;

default:
Body
}

1 The type of variablein the brackets can be a byte, char, short, int or long

James Tam

Loops

Java Pre-test loops
*For
* While

Java Post-test loop
*Do-while

James Tam

While Loops

Format:
while (Expression)
Body

Example:
inti=1;
while (i <= 1000000)
{
System.out.printin(“How much do | love thee?”);
System.out.printin(“Let me count the ways: “, +i);
i=i+1;

James Tam

For Loops

Format:
for (initialization; Boolean expression; update control)
Body

Example:
for (i = 1; i <= 1000000; i++)
{
System.out.printin(“How much do I love thee?”);
System.out.printin(“Let me count the ways: " + i);

James Tam

Do-While Loops

Format:
do
Body
while (Boolean expression);

Example:

char ch ="A’;

do

{
System.out.printin(ch);
ch++;

}

while (ch I="'K');

James Tam

Many Pre-Created Classes Have Been Created

*Rule of thumb: Before writing new program code to implement
the features of your program you should check to see if a class
has already been written that has methods that already
implement those features.

*The Java API is Sun Microsystems's collection of pre-built Java
classes:
- http://java.sun.com/javase/6/docs/api/

James Tam

Arrays

+Java arrays are very similar to arrays in C:
- Indexed from O to (size — 1).

- They must be homogeneous (each element contains the same type of
information).

*However they differ in one very important fashion:
-Java arrays always involve the dynamic allocation of memory (similar to
using ‘malloc’ or ‘alloc’ in ‘C’).
- An array variable is not actually an array but instead it is a reference to an
array.
* A reference is similar to a pointer and contains a memory address but unlike a
pointer low level operations such as “address of’/& and “de-referencing” of the

pointer using the “*” aren’t possible. De-referencing is automatically done as
needed depending upon the context.

James Tam

Arrays (2)

- This also means that while the size of the array in ‘C’ must generally be
determined when the program is written (at compile time a constant determines the
size) with Java arrays the size can be determined at runtime (the value stored in a
variable can determine the size).

James Tam

Arrays (3)

*Format (declaring a reference to an array):
<Type in each element> [] <array name>;

*Example (declaring a reference to an array):
int[] arr;

James Tam

Arrays (4)

*Format (creating an array by allocating memory):
<array name> = new <Type in each element> [<array size>];

*Example (declaring a reference to an array):
arr = new int [4];

Of course the two steps could be combined into one step:

int [] arr = new int [4];

James Tam

Arrays (5)

*The complete program can be found in UNIX under:
/home/courses/219/examples/java_intro/MyArray.java

Scanner in = new Scanner (System.in);
int[] arr;
int size;
inti;
System.out.print ("Type in the size of the array: ");
size = in.nextInt ();
arr = new int [size];
for (i =0; i < size; i++)
{
arrfi] = i;
System.out.print(arrfi] + " ");
}
System.out.printin();

James Tam

Arrays: Null References

int [] arr = null;

arr[0] = 1; { NullPointerException

After This Section You Should Now Know

*How Java was developed and the impact of it's roots on the
language

*The basic structure required in creating a simple Java program
as well as how to compile and run programs

*How to document a Java program

*How to perform text based input and output in Java

*The declaration of constants and variables

*What are the common Java operators and how they work

*The structure and syntax of decision making and looping
constructs

*How to declare and manipulate arrays

