
CPSC 219: Introduction to Object-Oriented programming

James Tam

Introduction To Object-Oriented
Programming

Encapsulation
Defining classes and instantiating objects
Attributes and methods
References and parameter passing
Information hiding
Constructors
Multiplicity and relationships

James Tam

Reminder: What You Know

•There are different paradigms (approaches) to implementing
computer programs.

•There are several different paradigms but the two you have been
introduced to thus far:
- Procedural
- Object-Oriented.

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Of The Procedural Approach

•Break down the program by what it does (described with
actions/verbs)

File Edit Help…

Creating
new

document

Opening a
document

Saving a
document

… Exiting
program

PowerPoint

James Tam

An Example Of The Object-Oriented Approach

•Break down the program into ‘physical’ components (nouns)

•Dragon•Knight

•Screamer•Ghost

•Mummy•Scorpion

Monsters

•Mace•Longbow

•Rapier•Broadsword

Weapons

Dungeon Master

CPSC 219: Introduction to Object-Oriented programming

James Tam

Example Objects: Monsters From Dungeon Master

•Dragon

•Scorpion

•Couatl

James Tam

Ways Of Describing A Monster

What can
the dragon
do?
(Behaviors)

What
information can
be used to
describe the
dragon?
(Attributes)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Monsters: Attributes

•Represents information about the monster:
-Name
-Damage it inflicts
-Damage it can sustain
-Speed

• :

James Tam

Monsters: Behaviours

• Represents what each monster can do (verb part):

• Dragon

• Scorpion

Stinger

CPSC 219: Introduction to Object-Oriented programming

James Tam

Monsters: Operations

•Couatl

Serpent
(poison)

Wings

James Tam

C Structs Vs. Java Objects

Composite type (Structs)

Information (attributes)

• Information about the
variable.

18’

25’

CPSC 219: Introduction to Object-Oriented programming

James Tam

C Structs Vs. Java Objects

Composite type (Objects)

Information (attributes)

• Information about the
variable.

Operations (methods1)

• What the variable “can
do”

1 A method is another name for a function in Java

18’

25’

James Tam

One Benefit Of Bundling Behaviors With Objects

•It can be more logical to bundle into the definition of composite
type what each instance can do rather than implementing that
function/method elsewhere.

typedef struct

{

} Dragon;

: :

void fly (Dragon a)

{

:

}

Non-Object-Oriented
Approach

public class Dragon

{

private int height;

private int weight;

public void fly ()

{

:

}

}

Object-Oriented
Approach

CPSC 219: Introduction to Object-Oriented programming

James Tam

Working With Objects In Java

I. Define the class
II. Create an instance of the class (instantiate an object)
III. Using the different parts of an object (data and methods)

James Tam

I) Defining A Java Class

Format:
public class <name of class>
{

instance fields/attributes
instance methods

}

Example:
public class Person
{

// Define instance fields
// Define instance methods

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Defining A Java Class (2)

Format of instance fields:
• <access modifier>1 <type of the field> <name of the field>;

•Example of defining instance fields:
public class Person
{

private int age;
}

1) Can be public or private but typically instance fields are private

2) Valid return types include the simple types (e.g., int, char etc.), predefined classes (e.g., String) or
new classes that you have defined in your program. A method that returns nothing has a return type
of “void”.

James Tam

Defining A Java Class (3)

Format of instance methods:
<access modifier>1 <return type2> <method name> (<p1 type> <p1
name>…)
{

<Body of the method>
}

Example of an instance method:
public class Person
{

public void fun (int num)
{

System.out.println (num);
}

}
1) Can be public or private but typically instance methods are public

2) Valid return types include the simple types (e.g., int, char etc.), predefined classes (e.g., String) or
new classes that you have defined in your program. A method that returns nothing has return type of
“void”.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Defining A Java Class (4)

Example (complete class definition):
public class Person
{

private int age;
public void setAge (int anAge)
{

age = anAge;
}
public int getAge ()
{

return age;
}

}

James Tam

A Class Is Like A Blueprint

•It indicates the format for what an example of the class should
look like (methods and attributes).
•Similar to a definition of a struct (except methods can be
specified).
•No memory is allocated.

CPSC 219: Introduction to Object-Oriented programming

James Tam

II) Creating/Instantiating Instances Of A Class

Format:
<class name> <instance name> = new <class name> ();

Example:
Person jim = new Person();

•Note: ‘jim’ is not an object of type ‘Person’ but a reference to an object of
type ‘Person’.

James Tam

An Instance Is An Actual Example Of A Class

•Instantiation is when an actual example/instance of a class is
created.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Declaring A Reference Vs. Instantiating An Instance

•Declaring a reference to a ‘Person’
Person jim;

•Instantiating/creating an instance of a ‘Person’
jim = new Person ();

James Tam

III) Using The Parts Of A Class

Format:
<instance name>.<attribute name>;
<instance name>.<method name>(<p1 name>, <p2 name>…);

Example:
int anAge = 27;
Person jim = new Person ();
jim.setAge(anAge);

System.out.println(jim.getAge());

Note: In order to use the dot-operator “.” the instance field or method cannot have a private level of access

CPSC 219: Introduction to Object-Oriented programming

James Tam

Laying Out Your Program

Java program

•The program must contain a ‘Driver’ class.

Driver.java

•The driver class is the place where the program starts running (it contains
the main method).

main ()

{

}

Person.java

•For now you should have all the classes for a particular program
reside in the same directory or folder.

•Instances of other classes can be created and used here.

Person jim = new Person ();

Accesses

James Tam

Laying Out Your Program

•The code for each class should reside in it’s own separate file.

class Person

{

: :

}

Person.java

class Driver

{

: :

}

Driver.java

CPSC 219: Introduction to Object-Oriented programming

James Tam

Putting It Altogether: First Object-Oriented
Example

•Example (The complete example can be found in the directory
/home/courses/219/examples/introductionOO/firstExample

public class Driver
{

public static void main (String [] args)
{

int anAge = 27;
Person jim = new Person ();
jim.setAge(anAge);
System.out.println("Jim's current age is..." + jim.getAge());

}
}

James Tam

Putting It Altogether:
First Object-Oriented Example (2)

public class Person
{

private int age;
public void setAge (int anAge)
{

age = anAge;
}
public int getAge ()
{

return age;
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Points To Keep In Mind About The Driver Class

•Contains the only main method of the whole program (where
execution begins)

•Do not instantiate instances of the Driver1

•For now avoid:
- Defining instance fields / attributes for the Driver1

- Defining methods for the Driver (other than the main method)1

1 Details will be provided later in this course

James Tam

UML1 Representation Of A Class

Foo

-num: int

+setNum ()

+getNum ()

<Name of class>
-<attribute name>: <attribute type>

+<method name> ()

1 UML = Unified Modeling Language

CPSC 219: Introduction to Object-Oriented programming

James Tam

Class Diagrams With Increased Details

Foo

-num: int

+setNum (aValue: int):
void

+getNum (): int

<Name of class>
-<attribute name>: <attribute type>

+<method name> (p1: p1type; p2 :
p2 type..): <return type>

2 UML = Unified Modeling Language

James Tam

•Class attributes (variables or constants)
- Declared inside the body of a class definition but outside the body of any
class methods.

- Typically there is a separate attribute for each instance of a class and it
lasts for the life of the object.

•Local variables and constants
- Declared within the body of a class’ method.
- Last for the life of the method

Attributes Vs. Local Variables

class Foo
{

private int num;
}

class Foo
{

public void aMethod () { char ch; }
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Examples Of An Attribute

public class Person
{

private int age;
public void setAge (int newAge)
{

int aLocal;
age = newAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();

}

“age”: Declared
within the definition
of a class

James Tam

Examples Of An Attribute

public class Person
{

private int age;
public void setAge (int anAge)
{

int aLocal;
age = anAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();

}

But declared outside of
the body of a method

CPSC 219: Introduction to Object-Oriented programming

James Tam

Example Of A Local Variable

public class Person
{

private int age;
public void setAge (int anAge)
{

int aLocal;
age = anAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();
jim.setAge (5);
joe.setAge (10);

}

“aLocal”: Declared
inside the body of a
method

James Tam

Scope Of Local Variables

•Enter into scope
- Just after declaration

•Exit out of scope
- When the corresponding enclosing brace is encountered

public class Bar
{

public void aMethod ()
{

int num1 = 2;
if (num1 % 2 == 0)
{

int num2;
num2 = 2;

}
}

Scope of
num1

CPSC 219: Introduction to Object-Oriented programming

James Tam

Scope Of Local Variables

•Enter into scope
- Just after declaration

•Exit out of scope
- When the proper enclosing brace is encountered

public class Bar
{

public void aMethod ()
{

int num1 = 2;
if (num1 % 2 == 0)
{

int num2;
num2 = 2;

}
}

Scope of num2

James Tam

Scope Of Attributes

public class Bar
{

private int num1;
: :

public void methodOne ()
{

num1 = 1;
num2 = 2;

}
public void methodTwo ()
{

num1 = 10;
num2 = 20;
methodOne ();

}
: :

private int num2;
}

Scope of num1 & num2

CPSC 219: Introduction to Object-Oriented programming

James Tam

Scope Of Attributes

public class Bar
{

private int num1;
: :

public void methodOne ()
{

num1 = 1;
num2 = 2;

}
public void methodTwo ()
{

num1 = 10;
num2 = 20;
methodOne ();

}
: :

private int num2;
}

Scope of
methodOne and
methodTwo

James Tam

Referring To Attributes And Methods Outside Of
A Class: An Example

public class Bar
{

public void aMethod ()
{

System.out.println(“Calling aMethod of class Bar”);
}

}

Scope of
aMethod

CPSC 219: Introduction to Object-Oriented programming

James Tam

Referring To Attributes And Methods Outside Of
A Class: An Example

public class Bar
{

public void aMethod ()
{

System.out.println(“Calling aMethod of class Bar”);
}

}

public class Driver
{

public static void main (String [] args)
{

Bar b1 = new Bar ();
Bar b2 = new Bar ();
b1.aMethod();

}
}

Outside the scope (dot
operator is needed)

James Tam

Referring To Attributes And Methods Inside Of A
Class: An Example

public class Foo
{

private int num;
public Foo () { num = 0; }
public void methodOne () { methodTwo(); }
public void methodTwo () { .. }

: : :
}
: :
main ()
{

Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.methodOne();

}

Call is inside
the scope (no
instance name
or ‘dot’ needed

Call is outside
the scope
(instance name
and ‘dot’ IS
needed

CPSC 219: Introduction to Object-Oriented programming

James Tam

Referring To The Attributes And Methods Of A
Class: Recap

1.Outside of the methods of the class you must use the dot-
operator as well as indicating what instance that you are
referring to.
e.g., f1.method();

2.Inside the methods of the class there is no need to use the dot-
operator nor is there a need for an instance name.
e.g.,
public class Foo
{

public void m1 () { m2(); }
public void m2 () { .. }

}

James Tam

Shadowing

One form of shadowing occurs when a variable local to the
method of a class has the same name as an attribute of that class.
- Be careful of accidentally doing this because the wrong identifier could be

accessed.

public class Sheep
{

private String name;
public Sheep (String aName)
{

String name;
name = aName;

}

NO!

CPSC 219: Introduction to Object-Oriented programming

James Tam

Shadowing

Scope Rules:
1. Look for a local identifier (variable or constant)
2. Look for an attribute

public class Foo
{

// Attributes
public void method ()

{
// Local variables

num = 1;
}

}

A reference to
an identifier

First: Look for a
local identifier
by that name

Second: Look
for an attribute
by that name

James Tam

Encapsulation

•The ability bundle information (attributes) and behavior
(methods) into a single entity.

•In Java this is done through a class definition.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Information Hiding

•An important part of Object-Oriented programming and takes
advantage of encapsulation.

•Protects the inner-workings (data) of a class.

•Only allow access to the core of an object in a controlled
fashion (use the public parts to access the private sections).

James Tam

Illustrating The Need For Information Hiding:
An Example

•Creating a new monster: “The Critter”
•Attribute: Height (must be 60” – 72”)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Illustrating The Need For Information Hiding:
An Example

•Creating a new monster: “The Critter”
•Attribute: Height (must be 60” – 72”)

James Tam

• The public methods can be used to do things such as access or
change the instance fields of the class

Public And Private Parts Of A Class

private
data

public
method

public
method

public
method

set data
(mutator
method)

get data
(accessor
method)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Public And Private Parts Of A Class (2)

• Types of methods that utilize the instance fields:
1) Accessor methods: a ‘get’ method

- Used to determine the current value of a field
- Example:

public int getNum ()
{

return num;
}

2) Mutator methods: a ‘set’ method
- Used to set a field to a new value
- Example:

public void setNum (int aValue)
{

num = aValue;
}

James Tam

How Does Hiding Information Protect The Class?

•Protects the inner-workings (data) of a class
- e.g., range checking for inventory levels (0 – 100)

•The complete example can be found in the directory
/home/courses/219/examples/introductionOO/secondExample

Inventory
+CRITICAL: int

+stockLevel: int

+inventoryTooLow()

Driver

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Inventory Class

public class Inventory
{

public final int CRITICAL = 10;
public int stockLevel;
public boolean inventoryTooLow ()
{

if (stockLevel < CRITICAL)
return true;

else
return false;

}
}

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Inventory chinook = new Inventory ();
chinook.stockLevel = 10;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel + 10;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel + 100;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel - 1000;
System.out.println ("Stock: " + chinook.stockLevel);

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Utilizing Information Hiding: An Example

•The complete example can be found in the directory
/home/courses/219/examples/introductionOO/thirdExample

Driver

+MIN: int

+MAX: int

+CRITICAL: int

-stockLevel: int

+inventoryTooLow()

+add()

+remove()

+showStockLevel()

Inventory

James Tam

The Inventory Class

public class Inventory
{

public final int CRITICAL = 10;
public final int MIN = 0;
public final int MAX = 100;
private int stockLevel = 0;

// Method definitions
public boolean inventoryTooLow ()
{

if (stockLevel < CRITICAL)
return true;

else
return false;

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Inventory Class (2)

public void add (int amount)
{

int temp;
temp = stockLevel + amount;
if (temp > MAX)
{

System.out.println();
System.out.print("Adding " + amount + " item will cause stock ");
System.out.println("to become greater than " + MAX + " units

(overstock)");
}
else
{

stockLevel = temp;
}

} // End of method add

James Tam

The Inventory Class (3)

public void remove (int amount)
{

int temp;
temp = stockLevel - amount;
if (temp < MIN)
{

System.out.print("Removing " + amount + " item will cause stock ");
System.out.println("to become less than " + MIN + " units

(understock)");
}
else
{

stockLevel = temp;
}

}

public String showStockLevel () { return("Inventory: " + stockLevel); }
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Inventory chinook = new Inventory ();
chinook.add (10);
System.out.println(chinook.showStockLevel ());
chinook.add (10);
System.out.println(chinook.showStockLevel ());
chinook.add (100);
System.out.println(chinook.showStockLevel ());
chinook.remove (21);
System.out.println(chinook.showStockLevel ());
// JT: The statement below won't work and for good reason!
// chinook.stockLevel = -999;

}
}

James Tam

Information Hiding

VERSION I: BAD!!!
public class Inventory
{

public final int CRITICAL = 10;
public int stockLevel;

: :

}

: :
chinook.stockLevel = <value!!!>

VERSION II: BETTER! :D
public class Inventory
{

public final int CRITICAL = 10;
public final int MIN = 0;
public final int MAX = 100;
private int stockLevel = 0;

: :
// mutator and accessors

}
: :
chinook.add (<value>);

Allowing direct access to the
attributes of an object by
other programmers is
dangerous!!!

Only allow access to
privates attributes via
public mutators and
accessors

CPSC 219: Introduction to Object-Oriented programming

James Tam

Method Overloading

•Same method name but the type, number or order of the
parameters is different (method signature).

•Used for methods that implement similar but not identical tasks.
•Method overloading is regarded as good coding style.
•Example:

System.out.println(int)
System.out.println(double)

etc.
For more details on class System see:
- http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

James Tam

Method Overloading (2)

• Things to avoid when overloading methods
1. Distinguishing methods solely by the order of the parameters.
2. Overloading methods but having an identical implementation.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Method Signatures And Program Design

•Unless there is a compelling reason do not change the signature
of your methods!

Class Foo
{

void fun ()
{

}
}

Before:
Class Foo
{

void fun (int num)
{

}
}

After:

public static void main ()
{

Foo f = new Foo ();
f.fun ()

}

This change
has broken
me!

James Tam

•A method that is used to initialize the attributes of an object as
the objects are instantiated (created).

•The constructor is automatically invoked whenever an instance
of the class is created.

Creating Objects With The Constructor

Constructor

Object

x

y

z

Object

x = 1

y = 2

z = 3

CPSC 219: Introduction to Object-Oriented programming

James Tam

Creating Objects With The Constructor (2)

•If no constructor is specified then the default constructor is
called

-e.g., Sheep jim = new Sheep();

The call to ‘new’ calls the default
constructor (if no constructor
method has been explicitly defined
in the class) as an instance of the
class is instantiated.

James Tam

Writing Your Own Constructor

Format (Note: Constructors have no return type):
public <class name> (<parameters>)
{

// Statements to initialize the fields of the object
}

Example:
public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
name = "No name";

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Overloading The Constructor

•Similar to other methods, constructors can also be overloaded
•Each version is distinguished by the number, type and order of
the parameters

public Sheep ()
public Sheep (String aName)

James Tam

Constructors: An Example

•The complete example can be found in the directory
/home/courses/219/examples/introductionOO/fourthExample

Driver Sheep
-name: String

+Sheep()

+Sheep(aName: String)

+getName()

+setName(aName: String)

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Sheep Class

public class Sheep
{

private String name;

public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
setName("No name");

}

public Sheep (String aName)
{

System.out.println("Creating the sheep called " + aName);
setName(aName);

}

James Tam

The Sheep Class (2)

public String getName ()
{

return name;
}

public void setName (String aName)
{

name = aName;
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Sheep nellie;
Sheep jim;
System.out.println();
System.out.println("Creating flock...");
nellie = new Sheep ("Nellie");
jim = new Sheep();
jim.setName("Jim");
System.out.println("Displaying updated flock");
System.out.println(" " + nellie.getName());
System.out.println(" " + jim.getName());
System.out.println();

}
}

James Tam

Association Relations Between Classes

•A relation between classes allows messages to be sent (objects
of one class can call the methods of another class).

Car Engine
+ignite ()

Engine anEngine = new Engine ();
anEngine.ignite ();

CPSC 219: Introduction to Object-Oriented programming

James Tam

Associations Between Classes

•One type of association relationship is a ‘has-a’ relation (also
known as “aggregation”).
- E.g. 1, A car <has-a> engine.
- E.g. 2, A lecture <has-a> student.

•Typically this type of relationship exists between classes when a
class is an attribute of another class.

public class Car
{

private Engine anEngine;
private Lights carLights;
public start ()
{

anEngine.ignite ();
carLight.turnOn ();

}
}

public class Engine
{

public boolean ignite () { .. }
}

public class Lights
{

private boolean isOn;
public void turnOn () { isOn =
true;}

}

James Tam

Directed Associations

•Unidirectional
- The association only goes in one direction
- You can only navigate from one class to the other (but not the other way
around).

- e.g., You can go from an instance of Car to Lights but not from Lights to
Car, or you can go from an instance of Car to Engine but not from Engine
to Car (previous slide).

CPSC 219: Introduction to Object-Oriented programming

James Tam

Directed Associations (2)

•Bidirectional
- The association goes in both directions
- You can navigate from either class to the other
- e.g.,

public class Student
{

private Lecture [] lectureList = new Lecture [5];
:

}

public class Lecture
{

private Student [] classList = new Student [250];
:

}

James Tam

UML Representation Of Associations

Car Light

Car

Student Lecture

Unidirectional associations

Bidirectional associations

Gasoline

CPSC 219: Introduction to Object-Oriented programming

James Tam

Multiplicity

•It indicates the number of instances that participate in a
relationship

•Also known as cardinality

Any number of instances possible*

Any number of instances in the inclusive range
from “n” to “m”

n..m

Exactly “n” instancesn

Exactly one instance1

DescriptionMultiplicity

James Tam

Multiplicity In UML Class Diagrams

Class 1 Class 2

Number of
instances of
class 1 that
participate in
the relationship

Number of
instances of
class 2 that
participate in
the relationship

CPSC 219: Introduction to Object-Oriented programming

James Tam

Review: C Pointers

main ()
{

int *num_ptr;
int num = 12;
num_ptr = #

}

num_ptr

12num
*num_ptr

James Tam

Java References

•It’s a pointer that cannot be explicitly de-referenced by the
programmer.

•Dynamic memory: automatically garbage collected when no
longer needed.

CPSC 219: Introduction to Object-Oriented programming

James Tam

De-Referencing: Java Example

Foo f1 = new Foo ();
Foo f2 = new Foo ();

f1 = f2;

Exactly what is
being copied
here?

James Tam

Java References

•It’s a pointer that cannot be explicitly de-referenced by the
programmer.

•Dynamic memory: automatically garbage collected when no
longer needed.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Automatic Garbage Collection Of Java References

•Dynamically allocated memory is automatically freed up when
it is no longer referenced

References Dynamic memory

f1(Address of a “Foo”)

f2 (Address of a “Foo”)

Object (Instance of a “Foo”)

Object (Instance of a “Foo”)

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g., f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

CPSC 219: Introduction to Object-Oriented programming

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g., f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();

f1

num 1

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int aValue) { num = aValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

When???

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•The Java interpreter tracks what memory has been dynamically
allocated.

•It also tracks when memory is no longer referenced.
•When the system isn’t busy, the Automatic Garbage Collector is
invoked.

•If an object has a finalize method then it is invoked:
- The finalize is a method written by the programmer to free up non-memory
resources e.g., closing and deleting temporary files created by the program,
closing network connections.

- This method takes no arguments and returns no values.
- Dynamic memory is NOT freed up by this method.

•After the finalize method finishes execution, the dynamic
memory is freed up by the Automatic Garbage Collector.

James Tam

Common Errors When Using References

•Forgetting to initialize the reference
•Using a null reference

CPSC 219: Introduction to Object-Oriented programming

James Tam

Error: Forgetting To Initialize The Reference

Foo f;
f.setNum(10); Compilation error!

> javac Driver.java

Driver.java:14: variable f might not have been
initialized

f.setNum(10);

^

1 error

James Tam

Error: Using Null References

Foo f = null;
f.setNum(10);

Run-time error!
> java Driver

Exception in thread "main"
java.lang.NullPointerException

at Driver.main(Driver.java:14)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Arrays And References

•(Reminder): Arrays involve dynamic memory allocation.
•Arrays are actually references to arrays
Format:

<array name> = new <array type> [<no elements>];

Example:
int [] arr = new int [4];

James Tam

Arrays Of Objects (References)

•An array of objects is actually an array of references to objects
class Foo
{

private int num;
public void setNum (int aNum) { num = aNum; }
public int getNum () { return num; }

}

e.g., Foo [] arr = new Foo [4];

•The elements are initialized to null by default
arr[0].setNum(1); NullPointerException

CPSC 219: Introduction to Object-Oriented programming

James Tam

Arrays Of References To Objects: An Example

•The complete example can be found in the directory
/home/courses/219/examples/introductionOO/fifthExample

Driver

Menu
-aManager : Manager

-menuSelection : String

+Manager ()

+getSelection ()

+processSelection ()

Book
-name : String

+Book (newName :
String)

+getName()

+setName (newName :
String)

Manager
+MAX_ELEMENTS: int

-bookList [0..9] : Book

-lastElement: int

+Manager ()

+display ()

+add ()

+remove ()

James Tam

The Book Class

public class Book
{

private String name;
public Book (String aName)
{

setName(aName);
}
public void setName (String aName)
{

name = aName;
}
public String getName ()
{

return name;
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Manager Class

public class Manager
{

public final int MAX_ELEMENTS = 10;
private Book [] bookList;
private int lastElement;

public Manager ()
{

bookList = new Book[MAX_ELEMENTS];
int i;
for (i = 0; i < MAX_ELEMENTS; i++)
{

bookList[i] = null;
}
lastElement = -1;

}

James Tam

The Manager Class (2)

public void display()
{

int i;
System.out.println("Displaying list");
if (lastElement == -1)

System.out.println("\tList is empty");
for (i = 0; i <= lastElement; i++)
{

System.out.println("\tTitle No. " + (i+1) + ": "+ bookList[i].getName());
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Manager Class (3)

public void add ()
{

String newName;
Scanner in;
if ((lastElement+1) < MAX_ELEMENTS)
{

System.out.print("Enter a title for the book: ");
in = new Scanner (System.in);
newName = in.nextLine ();
lastElement++;
bookList[lastElement] = new Book(newName);

}
else
{

System.out.print("Cannot add new element: ");
System.out.println("List already has " + MAX_ELEMENTS + "
elements.");

}
}

James Tam

The Manager Class (4)

public void remove ()
{

if (lastElement != -1)
{

bookList[lastElement] = null;
lastElement--;
System.out.println("Last element removed from list.");

}
else
{

System.out.println("List is already empty: Nothing to remove");
}

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Menu Class

public class Menu
{

private Manager aManager;
private String menuSelection;

public Menu ()
{

aManager = new Manager ();
menuSelection = null;

}

James Tam

The Menu Class (2)

public void display ()
{

System.out.println("\n\nLIST MANAGEMENT PROGRAM: OPTIONS");
System.out.println("\t(d)isplay list");
System.out.println("\t(a)dd new element to end of list");
System.out.println("\t(r)emove last element from the list");
System.out.println("\t(q)uit program");
System.out.print("Selection: ");

}

public void getSelection ()
{

String newName;
Scanner in = new Scanner (System.in);
menuSelection = in.nextLine ();

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Menu Class (3)

public void processSelection ()
{

do
{

display();
getSelection();
if (menuSelection.equals("d"))

aManager.display ();
else if (menuSelection.equals("a"))

aManager.add ();
else if (menuSelection.equals("r"))

aManager.remove ();
else if (menuSelection.equals("q"))

System.out.println ("Quitting program.");
else

System.out.println("Please enter one of 'd','a','r' or 'q'");
} while (!(menuSelection.equals("q")));

}
}

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Menu aMenu = new Menu ();
aMenu.processSelection();

} // End of main.
} // End of class Driver.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Methods Of Parameter Passing

•Passing parameters as value parameters (pass by value)
•Passing parameters as variable parameters (pass by reference)

James Tam

Passing Parameters As Value Parameters

fun (p1);

fun (<parameter type> <p1>)

{

}

Pass a copy

CPSC 219: Introduction to Object-Oriented programming

James Tam

Passing Parameters As Reference Parameters

fun (&p1);

fun (<parameter type> * <p1>)

{

p = value; / De-reference */

}

Pass address of
parameter

Address is stored in a pointer

James Tam

Parameter Passing In Java: Simple Types

•All simple types are always passed by value in Java.

DescriptionType

1 bit true or false valueboolean

16 bit Unicode characterchar

64 bit signed real numberdouble

32 bit signed real numberfloat

64 bit signed integerlong

32 bit signed integerint

16 but signed integershort

8 bit signed integerbyte

CPSC 219: Introduction to Object-Oriented programming

James Tam

Parameter Passing In Java: Simple Types (2)

Example:
public static void main (String [] args)

{
int num1;
int num2;
Swapper s = new Swapper ();
num1 = 1;
num2 = 2;
System.out.println("num1=" + num1 + "\tnum2=" + num2);
s.swap(num1, num2);
System.out.println("num1=" + num1 + "\tnum2=" + num2);

}

James Tam

Passing Simple Types In Java (2)

public class Swapper
{

public void swap (int num1, int num2)
{

int temp;
temp = num1;
num1 = num2;
num2 = temp;
System.out.println("num1=" + num1 + "\tnum2=" + num2);

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Passing References In Java

• (Reminder: References are required for variables that are arrays
or objects)

• Question:
-If a reference (object or array) is passed as a parameter to a method do
changes made in the method continue on after the method is finished?

Hint: If a reference is passed as a parameter into a method then a
copy of the reference is what is being manipulated in the method.

James Tam

An Example Of Passing References In Java:
UML Diagram

•Example (The complete example can be found in the directory
/home/courses/219/examples/introductionOO/sixthExample

Driver

Foo

Swap

-num :int

+getNum()

+setNum()

+noSwap()

+realSwap()

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Of Passing References In Java:
The Driver Class

public class Driver
{

public static void main (String [] args)
{

Foo f1;
Foo f2;
Swap s1;
f1 = new Foo ();
f2 = new Foo ();
s1 = new Swap ();
f1.setNum(1);
f2.setNum(2);

James Tam

An Example Of Passing References In Java:
The Driver Class (2)

System.out.println("Before swap:\t f1=" + f1.getNum() +"\tf2=" +
f2.getNum());

s1.noSwap (f1, f2);
System.out.println("After noSwap\t f1=" + f1.getNum() +"\tf2=" +

f2.getNum());
s1.realSwap (f1, f2);
System.out.println("After realSwap\t f1=" + f1.getNum() +"\tf2=" +

f2.getNum());
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Of Passing References In Java:
Class Foo

public class Foo
{

private int num;
public void setNum (int newNum)
{

num = newNum;
}
public int getNum ()
{

return num;
}

}

James Tam

An Example Of Passing References In Java:
Class Swap

public class Swap
{
public void noSwap (Foo f1, Foo f2)

{
Foo temp;
temp = f1;
f1 = f2;
f2 = temp;
System.out.println("In noSwap\t f1=" + f1.getNum () + "\tf2=" +

f2.getNum());
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Of Passing References In Java:
Class Swap (2)

public void realSwap (Foo f1, Foo f2)
{

Foo temp = new Foo ();
temp.setNum(f1.getNum());
f1.setNum(f2.getNum());
f2.setNum(temp.getNum());
System.out.println("In realSwap\t f1=" + f1.getNum () + "\tf2=" +

f2.getNum());
}

} // End of class Swap

James Tam

References: Things To Keep In Mind

•You can’t explicitly de-reference a reference
•But...

- If you refer to just the name of the reference then you are dealing with the
reference (to an object, to an array).
•E.g., f1 = f2;
•This copies an address from one reference into another reference, the original
objects don’t change.

- If you use the dot operator then you are dealing with the actual object.
•E.g.,
• temp = f2;
• temp.setNum (f1.getNum());
• temp and f2 refer to the same object and using the dot operator changes the same
object.

- Other times that this may be an issue
•Assignment
•Comparisons

CPSC 219: Introduction to Object-Oriented programming

James Tam

Shallow Copy Vs. Deep Copies

•Shallow copy
- Copy the address from one reference into another reference
- Both references point to the same dynamically allocated memory location
- e.g.,

Foo f1;
Foo f2;
f1 = new Foo ();
f2 = new Foo ();
f1 = f2;

James Tam

Shallow Vs. Deep Copies (2)

•Deep copy
-Copy the contents of the memory location pointed to by the
reference

-The references still point to separate locations in memory.
-e.g.,

f1 = new Foo ();
f2 = new Foo ();
f1.setNum(1);
f2.setNum(f1.getNum());
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());
f1.setNum(10);
f2.setNum(20);
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());

CPSC 219: Introduction to Object-Oriented programming

James Tam

Comparison Of The References

f1 = new Foo ();
f2 = new Foo ();
f1.setNum(1);
f2.setNum(f1.getNum());
if (f1 == f2)

System.out.println("References point to same location");
else

System.out.println("References point to different locations");

James Tam

Comparison Of The Data

f1 = new Foo2 ();
f2 = new Foo2 ();
f1.setNum(1);
f2.setNum(f1.getNum());
if (f1.getNum() == f2.getNum())

System.out.println(“Same data");
else

System.out.println(“Different data");

CPSC 219: Introduction to Object-Oriented programming

James Tam

Self Reference: This Reference

•From every (non-static) method of an object there exists a
reference to the object (called the “this” reference)
e.g.,
Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

num = num;
}

: :
}

James Tam

Self Reference: This Reference

•From every (non-static) method of an object there exists a
reference to the object (called the “this” reference)
e.g.,
Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

this.num = num;
}
: :

}

Because of the ‘this’
reference, attributes of
an object are always in
scope when executing
that object’s methods.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Implementation Hiding

•As long as the signature of a method doesn’t change the specific
way in which that method implements a task can change as
needed.
- (Worded differently: if you are using a method of another class you won’t
necessarily care how that method has been implemented as long as it does
what you need it to do).

•This hiding of the details of how part of a program has been
written (implemented) is referred to as implementation hiding.

James Tam

Implementation Hiding (2)

• Allows you to use a program module/method without knowing
how the code in the module was written (i.e., you don’t care
about the implementation).

• For example, a list can be implemented as either an array or as
a linked list.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Implementation Hiding (3)

123

125

135

155

161

166

167

167

169

177

178

165

List implemented as an array (add element)
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

James Tam

Implementation Hiding (4)

123

125

135

155

161

166

167

167

169

177

178

List implemented as an array (add element)
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

array[5] = 165

CPSC 219: Introduction to Object-Oriented programming

James Tam

Implementation Hiding (5)

•List implemented as a linked list (add element)

NULL

James Tam

Implementation Hiding (6)

•List implemented as a linked list (add element)

NULL

CPSC 219: Introduction to Object-Oriented programming

James Tam

Implementation Hiding (7)

•List implemented as a linked list (add element)

NULL

James Tam

Implementation Hiding (8)

• Changing the implementation of the list should have a minimal
(or no) impact on the rest of the program.

• Changing the implementation of a method is separate from
changing the signature of a method.

-This allows the program to modified (and improved) without having side
effects on the rest of the program or other programs that use the modified
code.

• For example:
-The “add” method is a black box.
-We know how to use it without being effected by the details of how it
works.

???

add (head, newElement)

CPSC 219: Introduction to Object-Oriented programming

James Tam

A Previous Example Revisited: Class Sheep

public class Sheep
{

private String name;

public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
name = "No name";

}
public Sheep (String aName)
{

System.out.println("Creating the sheep called " + n);
name = aName;

}
public String getName () { return name;}

public void setName (String newName) { name = newName; }
}

James Tam

We Now Have Several Sheep

I’m Bill! I’m Nellie!

I’m Jim!

CPSC 219: Introduction to Object-Oriented programming

James Tam

Question: Who Tracks The Size Of The Herd?

Bill: Me! Nellie: Me!

Jim: Me!

James Tam

Answer: None Of The Above!

•Information about all instances of a class should not be tracked
by an individual object.

•So far we have used instance fields.
•Each instance of an object contains it’s own set of instance
fields which can contain information unique to the instance.

public class Sheep
{

private String name;
: : :

}

name: Jim name: Nelliename: Bill

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Need For Static (Class Fields)

• Static fields: One instance of the field exists for the class (not
for the instances of the class)

name: Bill
object

name: Jim
object

name: Nellie
object

Class Sheep
flockSize

James Tam

Static (Class) Methods

•Are associated with the class as a whole and not individual
instances of the class.

•Typically implemented for classes that are never instantiated
e.g., Math.

•May also be used act on the class fields.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Static Data And Methods: UML Diagram

•Example (The complete example can be found in the directory
/home/233/examples/advancedOO/seventhExample

Driver

Sheep

-flockSize:int

-name: String

+Sheep()

+Sheep(newName:String)

+getFlockSize(): int

+getName (): String

+setName(newName: String):
void

+finalize(): void

James Tam

Static Data And Methods: The Driver Class

public class Driver
{

public static void main (String [] args)
{

System.out.println();
System.out.println("You start out with " + Sheep.getFlockSize() + "
sheep");
System.out.println("Creating flock...");
Sheep nellie = new Sheep ("Nellie");
Sheep bill = new Sheep("Bill");
Sheep jim = new Sheep();

CPSC 219: Introduction to Object-Oriented programming

James Tam

Static Data And Methods: The Driver Class (2)

System.out.print("You now have " + Sheep.getFlockSize() + " sheep:");
jim.setName("Jim");
System.out.print("\t"+ nellie.getName());
System.out.print(", "+ bill.getName());
System.out.println(", "+ jim.getName());
System.out.println();

}
} // End of Driver class

James Tam

Static Data And Methods: The Sheep Class

public class Sheep
{
private static int flockSize = 0;
private String name;

public Sheep ()
{

flockSize++;
System.out.println("Creating \"No name\" sheep");
name = "No name";

}

public Sheep (String aName)
{

flockSize++;
System.out.println("Creating the sheep called " + newName);
name = aName;

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Static Data And Methods: The Sheep Class (2)

public static int getFlockSize () { return flockSize; }

public String getName () { return name; }

public void setName (String newName) { name = newName; }

public void finalize ()
{

System.out.print("Automatic garbage collector about to be called for ");
System.out.println(this.name);
flockSize--;

}
} // End of definition for class Sheep

James Tam

Rules Of Thumb: Instance Vs. Class Fields

•If a attribute field can differ between instances of a class:
-The field probably should be an instance field (non-static)

•If the attribute field relates to the class (rather to an instance) or
to all instances of the class

-The field probably should be a static field of the class

CPSC 219: Introduction to Object-Oriented programming

James Tam

Rule Of Thumb: Instance Vs. Class Methods

•If a method should be invoked regardless of the number of
instances that exist then it probably should be a static method.

•If it never makes sense to instantiate an instance of a class then
the method should probably be a static method.

•Otherwise the method should likely be an instance method.

James Tam

Static Vs. Final

•Static: Means there’s one instance of the field for the class (not individual
instances of the field for each instance of the class)

•Final: Means that the field cannot change (it is a constant)

public class Foo
{

public static final int num1= 1;
private static int num2;
public final int num3 = 1;
private int num4;

: :
}

/* Why bother? */

/* Rare */

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Class With A Static Implementation

public class Math
{
// Public constants
public static final double E = 2.71…
public static final double PI = 3.14…

// Public methods
public static int abs (int a);
public static long abs (long a);

: :
}

•For more information about this class go to:
•http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

James Tam

Should A Class Be Entirely Static?

•Generally it should be avoided if possible because it often
bypasses many of the benefits of the Object-Oriented approach.

•Usually purely static classes (cannot be instantiated) have only
methods and no data (maybe some constants).

•When in doubt do not make attributes and methods static.

CPSC 219: Introduction to Object-Oriented programming

James Tam

A Common Error With Static Methods

•Recall: The “this” reference is an implicit parameter that is
automatically passed into the method calls (you’ve seen so far).
•e.g.,
•Foo f = new Foo ();
•f.setNum(10);

Explicit parameter

Implicit parameter
“this”

James Tam

A Common Error With Static Methods

•Static methods have no “this” reference as an implicit parameter
(because they are not associated with any instances).

public class Driver
{

private int num;
public static void main (String [] args)
{

num = 10;
}

}

Compilation error:

Driver3.java:6: non-static
variable num cannot be
referenced from a static
context

num = 10;

^

error

CPSC 219: Introduction to Object-Oriented programming

James Tam

Common Methods That Are Implemented

•The particular methods implemented for a class will vary
depending upon the application.

•However two methods that are commonly implemented for
many classes:
- toString
- equals

James Tam

“Method: toString”

•It’s commonly written to allow easy determination of the state
of a particular object (contents of important attributes).

•This method returns a string representation of the state of an
object.

•It will automatically be called whenever a reference to an object
is passed as a parameter is passed to the “print/println” method.

•The full example can be found online under:
/home/courses/219/examples/introductionOO/eighthExample

CPSC 219: Introduction to Object-Oriented programming

James Tam

Class Person: Version 1

public class Person
{

private String name;
private int age;
public Person () {name = "No name"; age = -1; }
public void setName (String aName) { name = aName; }
public String getName () { return name; }
public void setAge (int anAge) { age = anAge; }
public int getAge () { return age; }

}

James Tam

Class Person: Version 2

public class Person2
{

private String name;
private int age;
public Person2 () {name = "No name"; age = -1; }
public void setName (String aName) { name = aName; }
public String getName () { return name; }
public void setAge (int anAge) { age = anAge; }
public int getAge () { return age; }

public String toString ()
{

String temp = "";
temp = temp + "Name: "+ name + "\n";
temp = temp + "Age: " + age + "\n";
return temp;

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

class Driver
{

public static void main (String args [])
{

Person p1 = new Person ();
Person2 p2 = new Person2 ();
System.out.println(p1);
System.out.println(p2);

}
}

James Tam

“Method: equals”

•It’s written in order to determine if two objects of the same class
are in the same state (attributes have the same data values).

•The full example can be found online under:
/home/courses/219/examples/introductionOO/ninthExample

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

class Driver
{

public static void main (String args [])
{

Person p1 = new Person ();
Person p2 = new Person ();
if (p1.equals(p2) == true)

System.out.println ("Same");
else

System.out.println ("Different");

p1.setName ("Foo");
if (p1.equals(p2) == true)

System.out.println ("Same");
else

System.out.println ("Different");
}

}

James Tam

The Person Class

public class Person
{

private String name;
private int age;
public Person () {name = "No name"; age = -1; }
public void setName (String aName) { name = aName; }
public String getName () { return name; }
public void setAge (int anAge) { age = anAge; }
public int getAge () { return age; }
public boolean equals (Person aPerson)
{

boolean flag;
if ((name.equals(aPerson.getName())) && (age == aPerson.getAge ()))

flag = true;
else

flag = false;
return flag;

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

After This Section You Should Now Know

•How to define classes, instantiate objects and access different
part of an object

•What is the difference between a class, a reference and an object
•How to represent a class using class diagrams (attributes,
methods and access permissions) and the relationships between
classes

•Scoping rules for attributes, methods and locals
•What is encapsulation and how is it done
•What is information hiding, how is it done and why is it
important to write programs that follow this principle

•What are accessor and mutator methods and how they can be
used in conjunction with information hiding

James Tam

After This Section You Should Now Know (2)

•What is method overloading and why is this regarded as good
style

•What is method overloading, how is it done, why is it done
•What is a constructor and how is it used
•What is an association, how do directed and non-directed
associations differ, how to represent associations and
multiplicity in UML

•What is multiplicity and what are kinds of multiplicity
relationships exist

•How are the different parameter passing mechanisms (value and
reference) implemented in Java

•What is implementation hiding

CPSC 219: Introduction to Object-Oriented programming

James Tam

After This Section You Should Now Know (3)

•What is a static method and attribute, when is appropriate for
something to be static and when is it inappropriate (bad style)

•Two useful methods that should be implemented for almost
every class: toString and equals

