
CPSC 219: Administrative information

James Tam

Advanced Programming Concepts

You will learn how advanced
programming constructs and

concepts are implemented in ‘C’

James Tam

Variable Types

•Simple (atomic)
- Can’t be subdivided further into meaningful sub-elements
- Examples: integers, floating point/real, characters etc.

•Composite
- The variable can be treated as a single entity (one whole) e.g., one lecture
section of a course can be passed to a function.

- At the same time that composite entity consists of individual elements e.g.,
information about each student in a lecture can be individually extracted
and changed.

- Typically composite types can take two forms:
•Homogeneous: each part of the composite type must store the same type of
information e.g., a list of characters that store the letter grade for a student.

•Heterogeneous: while each part of the composite type can store the same type of
information there is no enforced requirement that it does so e.g., a student record
consists of a number of fields and each field can store different kinds of
information.

CPSC 219: Administrative information

James Tam

Homogeneous Composite Types

•In many languages it’s implemented as an array.
•(Note: each element MUST store the same type of
information…which is why it’s homogeneous).

Format (creating an array variable):
<type of each element> <name of the array> [<no of elements>];

Example (creating an array variable):
int lecture1_grades [100];
int leture2_grades [100]; • Creates a list of 100

elements.
• Each element consists of
an integer.

• Elements are numbered
from 0 – 99.

James Tam

Homogeneous Composite Types (2)

•Assigning a value to a single array element
- lecture1_grades [0] = 100;

•To copy the contents of one array to another a loop is needed.
for (i = 0; i < 100; i++)
{

lecture1_grades [i] = lecture2_grades [i];
}

CPSC 219: Administrative information

James Tam

Homogenous Types (3)

•Arrays can consist of multiple dimensions.
•(So far you’ve just seen arrays of a single dimension which are
lists).

•The number of characteristics used to describe the data being
stored will determine the number of dimensions used for the
array.

James Tam

Homogenous Types (4)

•Example: the grades for a single lecture could be stored in a 1D
array while the grades for multiple lecture sections could be
stored in a 2D array.

Student

Lecture
section

:

L01

L02

L03

L0N

L04

Third
student

…
Second
student

First
student

CPSC 219: Administrative information

James Tam

Homogenous Composite Types (5)

•Format (declaring an array with multiple dimensions):
<type of each element> <name of the array> [<size of dimension 1>] [<size
of dimension2>]...[<size of dimensionn>];

•Example (declaring an array with multiple dimensions):
int grades [100][10];

100 Rows (0 – 99) 100 Columns (0 – 99)

James Tam

Accessing Elements In Arrays With Multiple
Dimensions

•Typically it’s done using multiple nested loops.
•Example:
/* Initializing each array element to a starting value */

main ()
{
int r;
int c;
int matrix [10] [10];
for (r = 0; r < 10; r++)
for (c = 0; c < 10; c++)
matrix [r][c] = 0;

}

CPSC 219: Administrative information

James Tam

1D Character Arrays

•A character array (sometimes referred to as a ‘string’) is a
special case because the last occupied element of the array
should be marked with the null character (ASCII value 0) to
reduce the risk of accessing memory beyond the bounds of the
array.

•Example:
char list1 [6] = “abcde”;
char list2 [6] = “abc”;

•The format specifier for displaying a string onscreen is “%s”

James Tam

1D Character Arrays (2)

•Some common and useful string functions (in the library
string.h).

•Be sure to include in the header of your program a reference to
the library.
#include <string.h>

•String length
- Counts the number of occupied array elements
- Format:

<size> strlen (<string>);

- Example:
size = strlen (“hello”);

CPSC 219: Administrative information

James Tam

1D Character Arrays (3)

•String copy
- Copies one string into another string.
- Format:

strcpy (<destination string>, <source string>);

- Example:
char str1 [8];;
strcpy (str1, “hello”);

- Note: it is the responsibility of the programmer using this function to
ensure that the destination string is long enough to contain the source
string.

James Tam

1D Character Arrays (4)

•String concatenation
- Concatenates (“glues” the second string onto the end of the first string
string)

- Format:
strcat (<string 1>, <string 2>);

- Example:
char str1 [16] = "hello";
char str2 [8] = "there";
strcat (str1, str2);

- Note: it is the responsibility of the programmer using this function to
ensure that the destination string (first string) is long enough to contain the
contents of the two strings.

CPSC 219: Administrative information

James Tam

1D Character Arrays (5)

•String compare
- Compares two strings.

•Returns a negative value if string1 is less than string 2.
•Returns zero if string 1 and string 2 are equal.
•Returns a positive value if string 1 is greater than string 2.

- Format:
<integer> strcmp (<string 1>, <string 2>);

- Example:
char pass [80];
printf ("Enter password: ");
scanf (“%s”, &pass);
if (strcmp (pass, "password") == 0)

printf (“Bad password so you got it");

James Tam

Segmentation Faults And The Array Bounds (2)

RAM

a.out

[0]
[1]
[2]
[3]

list OK
OK
OK
OK

???

CPSC 219: Administrative information

James Tam

Segmentation Faults And The Array Bounds (2)

RAM

a.out

OK
OK
OK
OK

CORE
(Big file)

Wav file from “The SImpsons”

[0]
[1]
[2]
[3]

list

???

James Tam

Homogenous Composite Types: Good Style

•Because the size of the array is fixed after it’s been declared it’s
regarded as good style to use a constant in conjunction with an
array declaration:

•Example:
main ()
{

int const SIZE = 10;
int list [SIZE];
for (int i = 0; i < SIZE; i++)

list [i] = 0;
}

CPSC 219: Administrative information

James Tam

Heterogeneous Types

•In C the composite type (where each ‘portion’ of the whole
doesn’t have to store the same type of information as the other
portions) is implemented as a ‘struct’.
- Other languages use other constructs e.g., Pascal uses the ‘record’, Java
and Python uses ‘classes’ etc.

•In this case you are defining a new type of variable that can be
created and used so you first need to define to the compiler the
number and the type of fields for the struct.

•Format (defining the struct):
typedef struct
{

<type of field1> <name of field1>;
<type of field2> <name of field2>;

: :
<type of fieldn> <name of fieldn>;

} <name of the struct>;

James Tam

Heterogeneous Types (2)

•Example (defining a struct):
typedef struct
{

int telephone;
int id;
char name [128];

} Student;

Example (declaring a variable):
Student bart;
Start lisa;

CPSC 219: Administrative information

James Tam

Heterogeneous Types (3)

•Example (assignment, entire struct):
lisa = bart;

•Example (assignment, single field):
lisa.telephone = bart.telelphone;

James Tam

Displaying Information About A Struct

•Recall: A struct is a new type of variable that needs to be
defined.

•Output functions such as “printf” won’t be able to display the
contents of new variable types.

•Consequently the only types of information that can be
displayed are predefined types (it often means that the different
fields of the struct must be displayed in succession).

•Examples:
printf (“%d”, lisa.telephone);
printf (“%s”, lisa.name);

Question: What will happen with the following statement? Why?

printf (“%d”, telephone);

CPSC 219: Administrative information

James Tam

Binary Vs. Decimal Numbers

11101401106

11111501117

11011301015

11001201004

10111100113

10101000102

1001900011

1000800000

Binary valueDecimal valueBinary valueDecimal value

James Tam

Why Is C Regarded As A Powerful And Low-Level
Language

•Operations right down to the level of the bits can be performed.
- That means that the individual bits of a non-composite type such as
character can be modified and extracted.

•It’s easy to invoke functions that are built into the operating
system.

CPSC 219: Administrative information

James Tam

Bit Level Operations

•Bit shifting

- Format:
Variable name = Value to shift << Number of shifts

- Example:
• unsigned int num = 2;
• num = num << 2;
• num = num >> 2;

Bit Bit Bit Bit

Left shift

Right shift

James Tam

Bit Level Operations (2)

•Bitwise operations
- Bitwise AND ‘|’

Variable name = Value 1 & Value 2
- Bitwise OR ‘|’

Variable name = Value 1 | Value 2
- Bitwise NEGATION ‘~’

Variable name = ~Value

CPSC 219: Administrative information

James Tam

•Bit rotations:

•Although it’s not implemented in C with an existing operator
you can write the program code for this new operation using the
existing ones.

Bit Level Operations (3)

Bit Bit Bit Bit
Rotate
left

Rotate
right

Bit Bit Bit Bit

James Tam

There Are Benefits To Using Bitwise Operations

•In some applications speed is an issue important
- Scenarios where a guaranteed response time is mandatory
- E.g., the software used to fly an airplane

•Large and complex programs
- E.g., Complex simulations (Biology, Economics)
- E.g., games that draw complex graphics

CPSC 219: Administrative information

James Tam

System Calls

•C programs have the ability to call the commands of the
operating system and utility programs installed with the
operating system.

•This provides a useful set of utilities for the programmer.
- E.g., If the programmer wants spell checking functions within their own
program rather than writing it, a system call may be made to the spell
checker that’s included with the operating system.

•Format:
system (“<system command to execute”);

•Example:
system (“dict superflous”);

James Tam

Variables

•Variables are stored in memory (RAM).
•Each variable is stored in a ‘slot’ and with each one numbered
sequentially.

•Typically computers programs access a slot via the variable
name but slots may also be accessed via the numerical address
(depending upon the programming language).

Picture from Computers in your future by Pfaffenberger B

CPSC 219: Administrative information

James Tam

Variables (2)

•The variable types covered so far store information (atomic,
homogenous, heterogeneous).

•Some variables don’t store information but instead store an
address in memory. That address can contain information.
- Because these types of variables refer to (or “point” to) an address they’re
referred to as pointers.

- Pointers are used in several contexts while writing programs and how they
can be used WILL BE REFERRED TO LATER when functions and
parameter passing is discussed.

Pointer variable
(stores an address)

Data variable (e.g., integer) Data (e.g., 10)

Visualizing data variables

Visualizing pointer variables

Data variable @ address
1000 in RAM

10 Address 1000

James Tam

Pointers

•Format (declaration):
<Type of memory referred to> * <Pointer name>;

•Example (declaration):
int *num_ptr;

CPSC 219: Administrative information

James Tam

Pointers (2)

•Important distinction: because there are two memory locations
involved with pointer variables you need to understand when:
- you are working with the pointer,
- or you are working the memory referred to by the pointer.

•Recall: stating the name of a variable will refer to the memory
slot associated with that variable name.
int num1 = 1;
int num2 = 2;
printf (“%d”, num1);

•With a pointer:
- Referring to the name of the pointer will yield an address (because a
pointer stores an address not data) e.g., num_ptr

- Preceding the name of a pointer with a star will reference the address
contained in the pointer (“de-reference” the pointer to access what the
pointer “points to”) e.g., *num_ptr

James Tam

Pointers: An Example

The complete example (“pointer1.c”) can be found in the UNIX
directory: /home/courses/219/examples/c_advanced.

main ()
{

int *num_ptr;
int num = 2;
printf ("num: %d\n", num);
num_ptr = #
printf ("*num_ptr: %d\n", *num_ptr);
printf ("num_ptr: %d\n", num_ptr);
printf ("&num: %d\n", &num);
*num_ptr = 888;
printf ("num: %d\n", num);
printf ("*num_ptr: %d\n", *num_ptr);

}

CPSC 219: Administrative information

James Tam

A Way In Which Pointers May Be Used

•Pointers can be used to dynamically allocate memory (create a
memory space to be used as a variable).

•Functions such as “malloc”1 be used to dynamically allocate
memory as needed and the address of this memory can be stored
and accessed through a pointer.
- It’s “dynamically” because it’s allocated when malloc is called.
- This is similar to how local variables come into scope as functions are
called (but the memory used for local variables are stored on “the stack”
whereas memory used for functions such as malloc are stored in the
“heap”).

RAM Heap

(dynamically allocated memory)Address
@ xyzAddress xyzPointer

1) Malloc can be found in the library “stdlib.h”

James Tam

Using Pointers: An Example

•The complete example (“pointer2.c”) can be found in the UNIX
directory: /home/courses/219/examples/c_advanced

main ()
{

char *list_ptr;
int list_length;
int i = 0;

printf ("Enter the length of the string: ");
scanf ("%d", &list_length);
list_ptr = malloc (list_length+1);
getchar ();

CPSC 219: Administrative information

James Tam

Using Pointers: An Example (2)

if (list_length > 0)
{

printf ("Enter the string (max length) %d: ", list_length);

do
{
list_ptr[i] = getchar();
i++;

} while (i < list_length);

i = 0;
while (i < list_length)
{
printf ("%c", list_ptr[i]);
i++;

}
printf ("\n");

}
}

James Tam

Functions: What You Know

•Recall: functions must be defined before they can be used
(called).

•Python: function definition:
def <function name> ():

body

•Python: function call:
function name ()

CPSC 219: Administrative information

James Tam

Functions: Format

•Format (definition):
<function name> ()
{

<Body>
}

•Format (call):
- <function name> ();

•Example:
fun ()
{

printf ("In fun");
}

main ()
{

fun ();
}

Function
definition

Function call

James Tam

The ‘Main’ Function

•It’s a special function in C (and in Java)
•It’s the function that is automatically executed when the
program is run.

CPSC 219: Administrative information

James Tam

•To minimize the amount of memory that is used to store the
contents of variables and to reduce side effects (variables being
modified by accident) only declare variables when they are
needed.

•Local variables: variables declared within a set of braces are
local to those braces:.
{

int num;

}

Local Variables

After this
declaration ‘num’
comes into scope
(is accessible).

After this enclosing brace
‘num’ goes out of scope (is
no longer accessible).

James Tam

Function Return Values

•Recall: the value of local variables aren’t visible after a function
ends.

•Return values can be used to return the current state of a
variable back to the caller of a function.

•Note: a function can only return zero values or exactly one
value (but not more than one value).

•Format (function definition):
<function return type>
<function name> ()
{

return <value to be returned: a constant or variable>;
}

CPSC 219: Administrative information

James Tam

Function Return Values (2)

•The value that is returned from a function is usually assigned to
a variable.

•Valid function return values include the types that you’ve been
introduced to thus far (e.g., int, char etc) plus any new types that
you may have defined (using a “typedef”).

•A function that returns no value should return a “void” value.
•If a return type is not specified then the compiler will assume
something of type “int” is to be returned.

James Tam

Function Return Values (3)

•The complete program (“temperature.c”) can be found in the
UNIX directory: /home/courses/219/examples/c_advanced.

•Example:
void
introduction ()
{

printf ("Celsius to Fahrenheit converter\n");
printf ("-------------------------------\n");
printf ("This program will convert a given Celsius temperature to\n");
printf ("an equivalent Fahrenheit value.\n");

}

int
convert (int celsius)
{

int fahrenheit;
fahrenheit = celsius * (9 / 5) + 32;
return fahrenheit;

}

CPSC 219: Administrative information

James Tam

Function Return Values (4)

main ()
{

int celsius;
int fahrenheit;

printf ("Type in the celsius temperature: ");
scanf ("%d", &celsius);
fahrenheit = convert (celsius);
printf ("\nFahrenheit value: %d\n", fahrenheit);

}

James Tam

Function Parameters

•Since local variables aren’t visible outside of a function they
may need to be passed in as parameters (inputs) into functions.

•Format (defining function):
<function return type>
<function name> (<type of parameter1> <name of parameter1>, <type of
parameter2> <name of parameter2>,...<type of parametern> <name of
parametern>)

{
body

}

•Format (calling function):
<function name> (<name of parameter1>, <name of parameter2>,...<t<name
of parametern>);

CPSC 219: Administrative information

James Tam

Function Parameters (2)

•The complete program (“temperature2.c”) can be found in the
UNIX directory: /home/courses/219/examples/c_advanced.

•Example:
void
introduction ()
{

printf ("Celsius to Fahrenheit converter\n");
printf ("-------------------------------\n");
printf ("This program will convert a given Celsius temperature to\n");
printf ("an equivalent Fahrenheit value.\n");

}

void
display (celsius, fahrenheit)
{

printf ("\nConversions\n");
printf ("Celsius value: %d\n", celsius);
printf ("Fahrenheit value: %d\n", fahrenheit);

}

James Tam

Function Parameters (3)

void
convert ()
{

int celsius;
int fahrenheit;
printf ("Type in the celsius temperature: ");
scanf ("%d", &celsius);
fahrenheit = celsius * (9 / 5) + 32;
display (celsius, fahrenheit);

}

main ()
{

introduction ();
convert ();

}

CPSC 219: Administrative information

James Tam

Functions: Approaches To Passing Parameters

1. Pass by value (the value stored is passed)
• The value of the parameter is passed into a local variable.
• It allows the value stored in the parameter to be accessed (but not

changed, only the copy can be changed).
• Unless otherwise specified parameters will be passed by value

(default).

2. Pass by reference (a reference to the original variable is
passed)

• A reference to the original parameter is passed into function that not
only allows access to value stored in the parameter but also the
original parameter can be changed.

James Tam

Passing By Reference

Memory space for the calling function

Variable (stored
at a numerical
address)

Memory space for function being called

Address of variable
is passed into the
function

Pointer
variable

Address of the parameter
(allows the variable to be located
so it can be accessed and changed)

CPSC 219: Administrative information

James Tam

Pass By Reference (2)

•Format (function call):
<function name> (&<name of parameter1>, &<name of parameter2>...
&<name of parametern>);

•Format (function definition):
- <Function return value>
- <Function name> (*<type of parameter1> <name of parameter1>, *<type of
parameter2> <name of parameter2>,...*<type of parametern> <name of
parametern>)
{

body
}

& = “The address of” e.g., &num = address of variable num

* = “Pointer to location” *num = a pointer to a numerical variable.

James Tam

Pass By Reference (3)

•Example:
void
fun (int *num_ptr, int num)
{

*num_ptr = 10;
num = 10;
printf ("In fun: %d %d\n", *num_ptr, num);

}

main ()
{

int num1 = 2;
int num2 = 3;
printf ("Pre-fun: %d %d\n", num1, num2);
fun (&num1, num2);
printf ("Post-fun: %d %d\n", num1, num2);

}

CPSC 219: Administrative information

James Tam

Passing Arrays As Parameters

•When an array is passed to a function as a parameter it actually
isn’t the array itself that is passed.

•Instead what’s passed is a pointer to the first element of the
array which allows the elements of the array to be accessed.

•Format (definition):
- (Method 1):

<Function return value>
<Function name> (<Array element type> <Array name> [<Array size>])

- (Method 2):
<Function return value>
<Function name> (<Array element type> <Array name> [])

- (Method 3):
<Function return value>
<Function name> (<Pointer type> * <Pointer name>)

James Tam

Passing Arrays As Parameters (2)

•Example:
- (Method 1):

void
fun (int list [10])

- (Method 2):
void
fun (int list [])

- (Method 3):
void
fun (int * list)

CPSC 219: Administrative information

James Tam

Scope

•Indicates where an identifier (variable, constant, function) may
be accessed in a program.

•In ‘C’ the scope of a variable or constant is from where it has
been declared to the end of the nearest enclosing brace.
fun () if (num > 0)
{ {

char ch; char ch;
: :
: :

} }

Scope
of ‘ch’

Scope
of ‘ch’

James Tam

•Because functions are typically defined outside a set of
enclosing braces their scope begins after the header until the end
of the program.

void
fun ()
{

:
}

main ()
{

:
}

Scope (2)

Scope of
function ‘fun’

End of
program

CPSC 219: Administrative information

James Tam

Scope: Good Design

•To minimize side effects variables should be declared locally
unless there is strong argument for doing otherwise (using a
variable throughout the program isn’t a sufficient cause for
making it a global variable).

•Because constants cannot be changed they may be safely
declared outside of enclosing brackets (where they have
“global” scope like a function).

James Tam

What You Need In Order To Read
Information From A File

1. Declare a file variable
2. Open the file
3. A command to read the information
4. Close the file

You will also be referring to functions in the stdio library so a reference to the library via
#include must be made at the top of the program

CPSC 219: Administrative information

James Tam

1. Declaring File Variables

•Allows the program access to a file (the mechanism that
connects a computer program with a physical file).

Format:
FILE *<File variable>;

Example:
FILE *input_fp;

James Tam

2. Opening Files

Format:
<File variable> = fopen (<name of the file1>, “<opening mode2>”);

Example (opening a file):
input_fp = fopen ("input.txt", "r");

Example (checking for a non-existent file):
if (input_fp == NULL)

printf ("File 'input.txt' cannot be opened.");

1) The location of the file can be specified here

2) Opening modes include: read (“r”), write (“w”), append (“a”)

CPSC 219: Administrative information

James Tam

3. Reading From A File

•It’s similar to reading from the console (user types in the input)
so there’s many similar functions that can be used.

•Format (one function):
fscanf (<file variable>, "%<format specifier>", <variable name>);

•Example function call:
fscanf (input_fp, "%s", word);

James Tam

3. Reading From A File (2)

• However the function to read information from file is typically
enclosed within a loop (read from the file until):

1. The end of the file is reached.
2. A special marker for the end of file is reached (the sentinel value).

• Format:
while (end of file has not been reached)

Call function to read information from the file

• Example:
while (fscanf (input_fp, "%s", word) >= 0)
{

printf ("%s ", word);
}

CPSC 219: Administrative information

James Tam

3. Reading From A File (3)

• There are different functions that can be invoked to perform
the actual read from file:

1. fscanf (<file variable>, "%<format specifier>", <variable name>);
- It reads a ‘word’ at a time from the file (words are separated by spaces

or end of the line).
- Returns a negative value when the end of the file is reached.

2. fgets (<pointer or character array>,<number of char to read >, <file
pointer>);

- Reads a line at a time from the file (will read in spaces).
- Returns NULL when the end of file is reached.
- Reads the number of characters specified minus one (it appends a

NULL at the end of the string).
- It stops reading when:

The end of file has been reached.
The specified number of characters (minus one) has been read.
The end of line has been reached.
A read error has occurred.

James Tam

3. Reading From A File (4)

• Two complete example programs (“file1.c”, “file2.c”)
illustrating how these functions work can be found in the
UNIX directory: /home/courses/219/examples/c_advanced

CPSC 219: Administrative information

James Tam

4. Closing The File

•Closing a file is important for many reasons:
- While a file opened by a computer program is usually closed automatically
when the program ends, abnormal termination of the program may leave
the file open and “locked” (inaccessible).

- Some operating systems limit the number of files that can be opened.

•Format:
fclose (<file variable>);

•Example:
fclose (input_fp);

James Tam

File Input And Output: Putting It All Together

•The complete program (“file3.c”) can be found in
UNIX in the directory:
/home/courses/219/examples/c_advanced.

main ()
{
FILE *input_fp;
FILE *output_fp;

int midterm_exam;
int final_exam;
int assignments;
float term_gpa;
char letter;
char input_file_name [MAX];

CPSC 219: Administrative information

James Tam

File Input And Output: Putting It All Together (2)

input_fp = fopen (input_file_name, "r");
output_fp = fopen ("letters.txt", "w");

if (input_fp == NULL)
printf ("File '%s' cannot be opened.", input_file_name);

else if (output_fp == NULL)
printf ("Unable to open output file letters.txt for writing.");

James Tam

File Input And Output: Putting It All Together (3)

else
{
while (fscanf (input_fp, "%d", &midterm_exam) >= 0)
{

fscanf (input_fp, "%d", &final_exam);
fscanf (input_fp, "%d", &assignments);
term_gpa = (midterm_exam * 0.3) + (final_exam * 0.4) + (assignments *

0.3);

if ((term_gpa <= 4) && (term_gpa > 3.5))
letter = 'A';

else if ((term_gpa <= 3.5) && (term_gpa > 2.5))
letter = 'B';

else if ((term_gpa <= 2.5) && (term_gpa > 1.5))
letter = 'C';

else if ((term_gpa <= 1.5) && (term_gpa > 0.5))
letter = 'D';

else if ((term_gpa <= 0.5) && (term_gpa >= 0))
letter = 'F';

else
printf ("Error in gpa");

fprintf (output_fp, "%c\n", letter);
} /* While: read from file */

CPSC 219: Administrative information

James Tam

File Input And Output: Putting It All Together (4)

fclose (input_fp);
fclose (output_fp);

} /* Else: if program can read from the file. */
} /* End of the program. */

James Tam

Documenting Functions

•Some of the things that are commonly included when
documenting functions:
- Name of the function
- Purpose of the function: functions are supposed to implement one well
defined operation which can be specified in the documentation e.g.,
“Function intro function provides instructions about how to use program.”

•Also some of the things that are used to document an entire
program can also be used to document a function (except that
the documentation will describe the one function rather than the
entire program):
- What are the limitations of the function
- What assumptions are made about the state of the program in order for the
function to operate without errors (preconditions) e.g., “The parameter age
cannot be a negative value.”

- The algorithm used to implement the function e.g., “Function sort uses a
bubble sort to arrange the email contacts in alphabetical order.”

CPSC 219: Administrative information

James Tam

After This Section You Should Now Know

•What is the difference between a simple type and a composite
type

•Homogeneous composite types (arrays)
- How to declare a variable that is an array
- The difference between accessing the entire array and the different parts of
the array (e.g., row, element etc.)

- Passing arrays as function parameters
- What are strings and how do common string functions work

•What is a segmentation fault and under what circumstances do
they occur. How good programming style can reduce the
occurrence of segmentation faults.

•Heterogeneous types (struct)
- How to define a new type of variable via typedef
- How do declare instances of new types
- How to access the entire composite type vs. accessing individual fields

James Tam

After This Section You Should Now Know (2)

•How do low level (bit level) operations work and when it may
be useful to write programs that employ them

•What is a system call and how is it done within a C program
•Functions

- How to define and call functions
- How to return a value from a function
- The difference between the two parameter passing mechanisms (value and
reference) and how to write a function that employs each approach

- How to document functions

•Scope
- What is the difference between local vs. global scope
- Why variables should have local scope

CPSC 219: Administrative information

James Tam

After This Section You Should Now Know (3)

•Files
- How to open a file for reading vs. writing
- How to write a program that will read from or write to a file
- How to close a file and while is it important to explicitly close a file

