
Looping/repetition in Python 1

James Tam

Breaking Problems Down
This section of notes shows you how to
break down a large problem into
smaller parts that are easier to
implement and manage.

James Tam

Problem Solving Approaches

Bottom up

Top down

Looping/repetition in Python 2

James Tam

Bottom Up Approach To Design

Start implementing all details of a solution without first
developing a structure or a plan.

•Potential problems:
– (Generic problems): Redundancies and lack of coherence between sections.
– (Programming specific problem): Trying to implement all the details of large problem all at once

may prove to be overwhelming.

Here is the first of my many witty
anecdotes, it took place in a “Tim
Horton’s” in Balzac..

James Tam

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:
The humble beginnings

Chapter 2:
My rise to greatness

…

Chapter 1: The humble beginnings

It all started seven and one score years ago
with a log-shaped work station…

Looping/repetition in Python 3

James Tam

Top-Down Approach: Breaking A Large Problem
Down

Figure extracted from Computer Science Illuminated by Dale N. and Lewis J.

General approach

Approach
to part of
problem

Specific
steps of
the
solution

Abstract/
General

Particular

Top

Bottom

Approach
to part of
problem

Approach
to part of
problem

Specific
steps of
the
solution

Specific
steps of
the
solution

Specific
steps of
the
solution

James Tam

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate values,
perform the calculation and display the values onscreen.

Looping/repetition in Python 4

James Tam

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

James Tam

Situations In Which Functions Are Used

Definition
• Indicating what the function will do when it runs

Call
• Getting the function to run (executing the function)

Looping/repetition in Python 5

James Tam

Functions (Basic Case)

Function call

Function definition

James Tam

Defining A Function

Format:

def <function name> ():

body

Example:

function displayInstructions ():

print “Displaying instructions”

Looping/repetition in Python 6

James Tam

Calling A Function

Format:

function name ()

Example:

displayInstructions ()

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

The full version of this program can be found in UNIX under
/home/217/examples/functions/firstExampleFunction.py

def displayInstructions ():

print "Displaying instructions"

main function

displayInstructions()

print "End of program"

Looping/repetition in Python 7

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

The full version of this program can be found in UNIX under
/home/217/examples/functions/firstExampleFunction.py

def displayInstructions ():

print "Displaying instructions"

main function

displayInstructions()

print "End of program"

Function
definition

Function call

James Tam

Functions Should Be Defined Before They Can Be
Called!

Correct ☺
def fun ():

print "Works"

main
fun ()

Incorrect /
fun ()

def fun ():
print "Doesn't work"

Function
definition

Function
call

Function
definition

Function
call

Looping/repetition in Python 8

James Tam

Another Common Mistake

Forgetting the brackets during the function call:

def fun ():
print “In fun”

Main function
print “In main”
fun

James Tam

Another Common Mistake

Forgetting the brackets during the function call:

def fun ():
print “In fun”

Main function
print “In main”
fun ()

The missing set
of brackets
does not
produce a
translation error

Looping/repetition in Python 9

James Tam

Do Not Create Empty Functions

def fun ():

Main
fun()

Problem: This statement
appears to be a part of the
body of the function but it is
not indented???!!!

James Tam

Do Not Create Empty Functions

def fun ():
print “”

Main
fun()

A function
must have
at least one
indented
statement

Looping/repetition in Python 10

James Tam

•Variables are memory locations that are used for the temporary
storage of information.

•num = 0

•Each variable uses up a portion of memory, if the program is
large then many variables may have to be declared (a lot of
memory may have to be allocated – used up to store the contents
of variables).

What You Know: Declaring Variables

0num
RAM

James Tam

What You Will Learn: Using Variables That Are
Local To A Function

•To minimize the amount of memory that is used to store the contents of
variables only declare variables when they are needed.

•When the memory for a variable is no longer needed it can be ‘freed up’ and
reused.

•To set up your program so that memory for variables is only allocated
(reserved in memory) as needed and de-allocated when they are not (the
memory is free up) variables should be declared locally to a function.

Function call (local variables
get allocated in memory)

The program code in the function executes (the
variables are used to store information for the
function)

Function ends (local variables
get de-allocated in memory)

Looping/repetition in Python 11

James Tam

Where To Create Local Variables

def <function name> ():

Example:
def fun ():

num1 = 1
num2 = 2

Somewhere
within the body of
the function
(indented part)

James Tam

Working With Local Variables: Putting It All
Together

The full version of this example can be found in UNIX under
/home/courses/217/examples/functions/secondExampleFunction.py

def fun ():
num1 = 1
num2 = 2
print num1, " ", num2

Main function
fun()

Looping/repetition in Python 12

James Tam

Working With Local Variables: Putting It All
Together

The full version of this example can be found in UNIX under
/home/courses/217/examples/functions/secondExampleFunction.py

def fun ():
num1 = 1
num2 = 2
print num1, " ", num2

Main function
fun()

Variables that are
local to function
fun

James Tam

Problem: Local Variables Only Exist Inside A
Function

def display ():

print ""

print "Celsius value: ", celsius

print "Fahrenheit value :", fahrenheit

def convert ():

celsius = input ("Type in the celsius temperature: ")

fahrenheit = celsius * (9 / 5) + 32

display ()

Variables celsius
and fahrenheit are
local to function
‘convert’

What is ‘celsius’???
What is ‘fahrenheit’???

Looping/repetition in Python 13

James Tam

Solution: Parameter Passing

Variables exist only inside the memory of a function:

convert

celsius

fahrenheit

Parameter passing:
communicating information
about local variables into a
functiondisplay

Celsius? I know that value!

Fahrenheit? I know that value!

James Tam

Parameter Passing (Function Definition)

Format:
def <function name> (<parameter 1>, <parameter 2>...):

Example:
def display (celsius, fahrenheit):

Looping/repetition in Python 14

James Tam

Parameter Passing (Function Call)

Format:
<function name> (<parameter 1>, <parameter 2>...)

Example:
display (celsius, fahrenheit):

James Tam

Parameter Passing: Putting It All Together

The full version of this program can be found in UNIX under
/home/217/examples/functions/temperature.py

def introduction ():
print """

Celsius to Fahrenheit converter

This program will convert a given Celsius temperature to an equivalent
Fahrenheit value.

"""

Looping/repetition in Python 15

James Tam

Parameter Passing: Putting It All Together (2)

def display (celsius, fahrenheit):
print ""
print "Celsius value: ", celsius
print "Fahrenheit value:", fahrenheit

def convert ():
celsius = input ("Type in the celsius temperature: ")
fahrenheit = celsius * (9 / 5) + 32
display (celsius, fahrenheit)

Main function
introduction ()
convert ()

James Tam

New Problem: Results That Are Derived In One
Function Only Exist In That Function

def calculateInterest (principle, rate, time):

interest = principle * rate * time

main

principle = 100

rate = 0.1

time = 5

calculateInterest (principle, rate, time)

print “Interest earned $”, interest

Stored locally
interest = 50

Problem:

Value stored in
interest cannot be
accessed here

Looping/repetition in Python 16

James Tam

Solution: Have Function Return Values Back
To The Caller

def calculateInterest (principle, rate, time):

interest = principle * rate * time

return interest

main

principle = 100

rate = 0.1

time = 5

interest = calculateInterest (principle, rate, time)

print “Interest earned $”, interest

Variable
‘interest’ is local
to the function.

The value stored in the
variable ‘interest’ local
to ‘calculateInterest’ is
passed back and stored
in a variable that is local
to the main function.

James Tam

Using Return Values

Format (Single value returned):
return <value returned> # Function definition
<variable name> = <function name> () # Function call

Example (Single value returned):
return interest # Function definition

interest = calculateInterest (principle, rate, time) # Function call

Looping/repetition in Python 17

James Tam

Using Return Values

Format (Multiple values returned):
return <value1>, <value 2>... # Function definition
<variable 1>, <variable 2>... = <function name> () # Function call

Example (Multiple values returned):
return principle, rate, time # Function definition

principle, rate, time = getInputs (principle, rate, time) # Function call

James Tam

Using Return Values: Putting It All Together

The full version of this program can be found in UNIX under
/home/217/examples/functions/interest.py

def introduction ():
print """

Simple interest calculator

With given values for the principle, rate and time period this program
will calculate the interest accrued as well as the new amount (principle
plus interest).

"""

Looping/repetition in Python 18

James Tam

Using Return Values: Putting It All Together (2)

def getInputs (principle, rate, time):
principle = input("Enter the original principle: ")
rate = input("Enter the yearly interest rate %")
rate = rate / 100.0
time = input("Enter the number of years that money will be invested: ")
return principle, rate, time

def calculate (principle, rate, time, interest, amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount

James Tam

Using Return Values: Putting It All Together (3)

def display (principle, rate, time, interest, amount):
temp = rate * 100
print ""
print "With an investment of $", principle, " at a rate of", temp, "%",
print " over", time, " years..."
print "Interest accrued $", interest
print "Amount in your account $", amount

Looping/repetition in Python 19

James Tam

Using Return Values: Putting It All Together (4)

Main function
principle = 0
rate = 0
time = 0
interest = 0
amount = 0

introduction ()
principle, rate, time = getInputs (principle, rate, time)
interest, amount = calculate (principle, rate, time, interest, amount)
display (principle, rate, time, interest, amount)

James Tam

Testing Functions

This is an integral part of the top down approach to designing
programs.

Recall with the top down approach:
1. Outline the structure of different parts of the program without

implementing the details of each part (i.e., specify what functions that
the program must consist of but don’t write the code for the functions
yet).

Calculate Interest

Get information Do calculations Display results

Looping/repetition in Python 20

James Tam

Testing Functions

2. Implement the body of each function, one-at-a-time.

Get information
def getInput (principle, rate, time):

principle = input (“Enter the principle: “)
rate = input("Enter the yearly interest rate %")
rate = rate / 100.0
time = input("Enter the number of years that

money will be invested: ")
return principle, rate, time

Calculate Interest

Get information Do calculations Display results

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Get information
def getInput (principle, rate, time):

: :
return principle, rate, time

main
principle, rate, time = getInput()
print “principle”, principle
print “rate”, rate
print “time”, time

Looping/repetition in Python 21

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Calculate Interest

Get information Do calculations Display results

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount # 0, 0

main
Test case 1: Interest = 0, Amount = 0
interest, amount = calculate (0, 0, 0, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Test case 2: Interest = 50, Amount = 150
interest, amount = calculate (100, 0.1, 5, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Looping/repetition in Python 22

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount # 50, 100

main
Test case 1: Interest = 0, Amount = 0
interest, amount = calculate (0, 0, 0, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Test case 2: Interest = 50, Amount = 150
interest, amount = calculate (100, 0.1, 5, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

James Tam

The Type And Number Of Parameters Must Match!

Correct ☺:
def fun1 (num1, num2):

print num1, num2

def fun2 (num1, str1):
print num1, str1

main
num1 = 1
num2 = 2
str1 = "hello"

fun1 (num1, num2)
fun2 (num1, str1)

Two numeric
parameters are
passed into the call
for ‘fun1’ which
matches the two
parameters listed in
the definition for
function ‘fun1’

Two parameters (a
number and a string)
are passed into the
call for ‘fun2’ which
matches the type for
the two parameters
listed in the definition
for function ‘fun2’

Looping/repetition in Python 23

James Tam

The Type And Number Of Parameters Must Match!
(2)

Incorrect /:
def fun1 (num1):

print num1, num2

def fun2 (num1, str1):
num1 = str1 + 1
print num1, str1

main
num1 = 1
num2 = 2
str1 = "hello"

fun1 (num1, num2)
fun2 (num1, str1)

Two numeric
parameters are
passed into the call
for ‘fun1’ but only one
parameter is listed in
the definition for
function ‘fun1’

Two parameters (a
number and a string)
are passed into the
call for ‘fun2’ but in
the definition of the
function it’s expected
that both parameters
are numeric.

James Tam

Program Design: Finding The Candidate Functions

• The process of going from a problem description (words that
describe what a program is supposed to do) to writing a
program that fulfills those requirements cannot be summarized
in just a series of steps that fit all scenarios.

• The first step is to look at verbs either directly in the problem
description (indicates what actions should the program be
capable of) or those which can be inferred from the problem
description.

• Each action may be implemented as a function but complex
actions may have to be decomposed further into several
functions.

Looping/repetition in Python 24

James Tam

Program Design: An Example Problem

(Paraphrased from the book “Pascal: An introduction to the Art
and Science of Programming” by Walter J. Savitch.

Problem statement:

Design a program to make change. Given an amount of money, the
program will indicate how many quarters, dimes and pennies are needed.
The cashier is able to determine the change needed for values of a dollar
and above.

Actions that may be needed:

•Action 1: Prompting for the amount of money

•Action 2: Computing the combination of coins needed to equal this
amount

•Action 3: Output: Display the number of coins needed

James Tam

Program Design: An Example Problem

• However Action 2 (computing change) is still quite large and may require
further decomposition into sub-actions.

• One sensible decomposition is:
• Sub-action 2A: Compute the number of quarters to be given out.
• Sub-action 2B: Compute the number of dimes to be given out.
• Sub-action 2C: Compute the number of pennies to be given out.

• Rules of thumb for designing functions:
1. Each function should have one well defined task. If it doesn’t then it may

have to be decomposed into multiple sub-functions.
a) Clear function: A function that prompts the user to enter the amount of money.
b) Ambiguous function: A function that prompts for the amount of money and

computes the number of quarters to be given as change.
2. Try to avoid writing functions that are longer than one screen in size (again

this is a rule of thumb!)

Looping/repetition in Python 25

James Tam

Determining What Information Needs To Be
Tracked

1. Amount of change to be returned

2. Number of quarters to be given as change

3. Number of dimes to be given as change

4. Number dimes to be given as change

5. The remaining amount of change still left (changes as
quarters, dimes and pennies are given out)

James Tam

Outline Of The Program

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

Looping/repetition in Python 26

James Tam

Where To Declare Your Variables?

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

•Amount?
•Quarters?
•Dimes?
•Pennies?
•Amount left?

James Tam

Where To Declare Your Variables?

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

•Amount?
•Quarters?
•Dimes?
•Pennies?

•AmountLeft?

Looping/repetition in Python 27

James Tam

Skeleton Functions

It’s a outline of a function with a bare minimum amount that is
needed to translate to machine (keywords required, function
name, a statement to define the body – return values and
parameters may or may not be included in the skeleton).

James Tam

Code Skeleton: Change Maker Program

def inputAmount (amount):
return amount

def computeQuarters (amount, amountLeft, quarters):
return amountLeft, quarters

def computeDimes (amountLeft, dimes):
return amountLeft, dimes

def computePennies (amountLeft, pennies):
return pennies

def computeChange (amount, quarters, dimes, pennies):
amountLeft = 0
return quarters, dimes, pennies

def outputCoins (amount, quarters, dimes, pennies):
print ""

Looping/repetition in Python 28

James Tam

Code Skeleton: Change Maker Program (2)

MAIN FUNCTION
amount = 0
quarters = 0
dimes = 0
pennies = 0

James Tam

Implementing And Testing The Main Function

inputAmount
(Design and
test #2)

Change program
(main) (Design & test
#1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

Looping/repetition in Python 29

James Tam

Implementing And Testing The Main Function

MAIN FUNCTION
amount = 0
quarters = 0
dimes = 0
pennies = 0

write “ Before ‘inputAmount’ ”
amount = inputAmount (amount)
write “ After ‘inputAmount’ ”

JT’s note: Do the same tests to check the calls the other functions
quarters, dimes, pennies = computeChange (amount, quarters, dimes, pennies)
outputCoins (amount, quarters, dimes, pennies)

def inputAmount (amount):
print “<<<Inside inputAmount>>”
return amount

James Tam

Implementing And Testing InputAmount

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

Looping/repetition in Python 30

James Tam

Implementing And Testing Input Functions

Function definition
def inputAmount (amount):

amount = input ("Enter an amount of change from 1 to 99 cents: ")
return amount

Testing the function definition
amount = inputAmount (amount)
print “amount:”, amount

Test that your
inputs were read
in correctly
DON’T ASSUME
that they were!

James Tam

Implementing And Testing The Compute Functions

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test
#6)

ComputePennies
(Design & test #7)

Looping/repetition in Python 31

James Tam

Implementing And Testing ComputeQuarters

Function definition
def computeQuarters (amount, amountLeft, quarters):

quarters = amount / 25
amountLeft = amount % 25
return amountLeft, quarters

Function test
amount = 0;
amountLeft = 0
quarters = 0
amount = input (“Enter amount: “)
amountLeft, quarters = computeQuarters (amount, amountLeft, quarters)
print “Amount:”, amount
print “Amount left:”, amountLeft
print “Quarters:”, quarters

Check the program
calculations against
some hand
calculations.

James Tam

Globals

By default variables and constants which aren’t declared as local
are global.

num1 = 1

def fun ():
num2 = 2

MAIN FUNCTION
num3 = 3
CONSTANT_VALUE = 4

Global
variables

Global
constant

Local variable
(declared
within the
body of a
function).

Looping/repetition in Python 32

James Tam

Globals

By default variables and constants which aren’t declared as local
are global.

num1 = 1

def fun ():
num2 = 2

write num1
write num3
write CONSTANT_VALUE

MAIN FUNCTION
num3 = 3
CONSTANT_VALUE = 4

Global variables and
constants can be
accessed anywhere
in the program.

James Tam

Avoid The Use Of Global Variables Without A
Compelling Reason

1. Using global variables (without at least passing them as
parameters) may result in programs that are harder to trace:

def fun ():
num = 10
print num

MAIN FUNCTION
num = 1
print num
fun ()
print num

Global variables
can be accessed
but by default
they won’t
change???

Local version of
variable ‘num’

Global version of
variable ‘num’

Looping/repetition in Python 33

James Tam

Avoid The Use Of Global Variables Without A
Compelling Reason

1. Using global variables (without at least passing them as
parameters) may result in programs that are harder to trace:

def fun ():
global num
num = 10
print num

MAIN FUNCTION
num = 1
print num
fun ()
print num

An explicit indicator that all
references to ‘num’ are to
the global variable not a
local version.

James Tam

Avoid The Use Of Global Variables Without A
Compelling Reason

2. Also programs that make extensive use of global variables
may be harder to maintain and update:
• Changes in one part of the program may produce unexpected side

effects in other parts of the program that weren’t changed with the
update.

Function 1

Changed
code here

Function 2

Function 3

Unexpected side-effects

Unexpected side-effects

Looping/repetition in Python 34

James Tam

Globals: Bottom Line

Using global constants is acceptable and is often regarded as good programming style.

def calculateChange (population):
population = population + (population * (BIRTH_RATE - MORTALITY_RATE))
return population

def displayChange (population):
print "Birth rate:", BIRTH_RATE, ", mortality rate:", MORTALITY_RATE
print "Projected population:", population

MAIN FUNCTION
BIRTH_RATE = 0.1
MORTALITY_RATE = 0.01
population = 100

print "Existing population:", population
population = calculateChange (population)
displayChange (population)

James Tam

Globals: Bottom Line (2)

Using global constants is acceptable and is often regarded as good
programming style.

def calculateChange (population):
population = population + (population * (BIRTH_RATE - MORTALITY_RATE))
return population

def displayChange (population):
print "Birth rate:", BIRTH_RATE, ", mortality rate:", MORTALITY_RATE
print "Projected population:", population

MAIN FUNCTION
BIRTH_RATE = 0.5
MORTALITY_RATE = 0.001
population = 100

print "Existing population:", population
population = calculateChange (population)
displayChange (population)

Looping/repetition in Python 35

James Tam

Globals: Bottom Line (3)

However the use of global variables should be largely avoided:
• Programs are harder to trace and read
• Maintenance may be harder

James Tam

Why Employ Problem Decomposition And Modular
Design

Drawback
• Complexity – understanding and setting up inter-function

communication may appear daunting at first
• Tracing the program may appear harder as execution appears to “jump”

around between functions.

Benefit
• Solution is easier to visualize
• Easier to test the program
• Easier to maintain (if functions are independent changes in one function

can have a minimal impact on other functions)

Looping/repetition in Python 36

James Tam

You Now Know

• How to write the definition for a function
• How to write a function call

• How to pass information to and from functions via parameters
and return values

• What is the difference between a local variable/constant and a
global

• How to test functions and procedures

• How to design a program from a problem statement
• How to determine what are the candidate functions
• How to determine what variables are needed and where they need to be

declared
• Some approaches for developing simple algorithms

