Advanced Composite Types

You will learn in this section of notes
how to create single and generic
instances of non-homogeneous
composite types.

James Tam

What You Know

* How to create composite types (that are composed of other
types e.g., integers, real numbers, strings) which are
homogeneous.

= Python implementation of this composite type: List

= Typical implementation of this composite type in other
programming languages (e.g., ‘C’, “C++”, “Pascal”, “Java”): Array

James Tam

What You Will Learn

* How to create composite types that aren’t strictly
homogeneous (elements are all the same).

James Tam

The List Revisited

* This type of list that you have seen before is referred to as
an array:

= Each element stores the same type of information.

= (Usually) the size of each element is the same.

= Examples:
—percentages = [0.0, 0.0, 0.0, 0.0, 0.0]
~etters = ['A’, ‘A’, ‘A’]
—names = [“James Tam”, “Stacey Walls”, “Jamie Smyth”]

James Tam

The List Revisited (2)

* Problem: What if different types of information needs to be
tracked as a composite type?

Example, storing
information about a

client:
First name ...series of characters
eLast name ...series of characters
*Phone number ...numerical or character
» Address ...series of characters
*Postal code ...series of characters
*Email address ...series of characters

s Total purchases made ...numerical or character

James Tam

The List Revisited (3)

* The array type employed by other programming languages
won’t work (each element must store the same type of
information)

* The list implementation used in Python provides more
features that a typical array.

* If just a few clients need to be tracked then a list can be
employed:
firstClient = ["James",
"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

James Tam

The List Revisited (4)

* (Or as a small example)
def display (firstClient):
print "DISPLAYING CLIENT INFORMATION"
print n "

for i in range (0, 6, 1):
print firstClient [i]

MAIN

firstClient = ["James",
"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

display (firstClient)

James Tam

The List Revisited (5)

+ If only a few instances of the composite type (e.g., “Clients”) need to be
created then a list can be employed.
firstClient = ["James",
"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter",
"Griffin",
"(708)123-4567",
"725 Spoon Street",
"NA",
"griffinp@familyguy.com",
100]

James Tam

Classes

 Can be used define a generic template for a new non-
homogeneous composite type.

* This template defines what an instance or example of this
new composite type would consist of but it doesn’t create
an instance.

James Tam

Defining A Class

* Format:
class <Name of the class>:
name of first field = <default value>
name of second field = <default value>

* Example:
class Client: ~
firstName = "default”

lastName = "default Describes what information

phone = "("123)456'7890" . that would be tracked by a
address = "default address “Client” but doesn’t actually
postalCode = "XXX-XXX" create a client in memory

email = "foo@bar.com"
purchases = 0 -

James Tam

Creating An Instance Of A Class

* Format:

<variable name> = <name of class> ()

* Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That

Class
* Defining a class * Creating a class
= A template that describes = Examples of (instantiations)
that class: how many fields, of that class which can take
what type of information on different forms.

will be stored by each field,
what default information
will be stored in a field.

James Tam

Accessing And Changing The Fields

*Format:
<variable name>.<field name>

*Example:

The full version can be found in UNIX under
/home/courses/217/examples/composites/client.py

firstClient = Client ()
firstClient.firstName = "James"
firstClient.lastName = "Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print firstClient.firstName
print firstClient.lastName

print firstClient.phone

print firstClient.address

print firstClient.postalCode
print firstClient.email

print firstClient.purchases

James Tam

What Is The Benefit Of Defining A Class

« It allows new types of variables to be declared.

* The new type can model information about most any
arbitrary entity:
= Car
= Movie
= Your pet
= A biological entity in a simulation
= A ‘critter’ a video game
= An ‘object’ in a video game
= Etc.

James Tam

What Is The Benefit Of Defining A Class (2)

 Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
firstName = "default"
lastName = "default"
phone = "(123)456-7890"
address = "default address"
postalCode = "XXX-XXX"
email = "foo@bar.com"
purchases =0

firstClient = Client ()
print firstClient.middleName

James Tam

What Is The Benefit Of Defining A Class (2)

 Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
firstName = "default”
lastName = "default"
phone = "(123)456-7890"
address = "default address"
postalCode = "XXX-XXX"
email = "foo@bar.com"
purchases =0

firstClient = Client ()

print FirSEe TddleName There is no field by
this name

James Tam

You Should Now Know

*How a list can be used to store different types of information
(non-homogeneous composite type)

*How to define an arbitrary composite type using a class

*What are the benefits of defining a composite type by using
a class definition over using a list

*How to create instances of a class (instantiate)
*How to access and change the attributes or fields of a class

James Tam

