

Computer Buses: How Information Is Transmitted

•Carries information between the different parts of the computer. •Information is transmitted via electrical currents on wires.

Large Units Of Measurement

•Kilo: One thousand 1,000

•Mega: One million 1,000,000

•Giga: One billion 1,000,000,000

•Tera: One trillion 1,000,000,000,000

Small Units Of Measurement

•Milli: one thousandth (1 / 1,000)

•Micro: one millionth (1 / 1,000,000)

•Nano: on billionth (1 / 1,000,000,000)

Large Units Of Measurement On The Computer

•Note: powers of two are used because computer memory and storage are based on the basic unit (bit).

- •Kilobyte (KB) ~ a thousand bytes $(1,024 = 2^{10})$
- •Megabyte (MB) ~ a million bytes $(1,048,576 = 2^{20})$
- •Gigabyte (GB) ~ a billion bytes $(1,073,741,824 = 2^{30})$
 - \sim A complete set of encyclopedias requires about 700 MB of storage
 - \sim 30 minutes of video (\sim 1/4 of the information stored on a typical DVD)
- •Terabyte (TB) ~ a trillion bytes $(1,099,511,627,776 = 2^{40})$
 - \sim 20 million four-drawer filing cabinets full of text
 - $\sim 200 \; DVD$'s of information

RAM: Storing Information

- •RAM is a collection of 'slots' where information is stored.
- •Each slot is a collection of bits (1 byte)
 - e.g., a 1 Gigabyte stick of RAM has ~1 billion slots with each slot consisting of a byte.

Storing Information In RAM

•All information stored in memory must somehow be translated to binary (pattern of on/off):

- Text

- Graphics

- Videos

- The instructions in a computer program

James Tam

Storing Text Information In RAM

- Text is stored in using the <u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange (ASCII)
- Eight bits/one byte (256 combinations) is used to store information about a single text character.
- Each character is mapped to a number from 0 255.
- That number is then translated to a binary pattern (on/off states).

Value to represent	Number	Bit pattern (8 bits / 1 byte)
'0' to '9'	48 - 57	off off on on off off off off – off off on on on off off on
'A' to 'Z'	65 – 90	off on off off off off off on – off on off on on off on off
ʻa' toʻz'	97 – 122	off on on off off off off on – off on on on on off on off

Beyond The Byte: The Word

•Encoding information that is more complex than simple text requires more than 8 bits (256 combinations) e.g., international languages, images, animations.

•Word

- The word size of a computer is the number of adjacent bits that can be stored and manipulated as a unit.
- Typical word sizes for home computers: 32 or 64 bits, 128 bits for faster machines or specialized systems.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Name	Speed	
PC-1600	100 MHz	
PC-2100	133 MHz	
PC-2700	166 MHz	
PC-3200	200 MHz	

lame	Speed	
C2-3200	200 MHz	
C2-4200	266 MHz	
PC2-5300	333 MHz	
°C2-6400	400 MHz	
°C2-8500	533 MHz	

Name	Speed	
PC3-6400	400 MHz	
PC3-8500	533 MHz	
PC3-10600	667 MHz	
PC3-12800	800 MHz	

How Much RAM?

•Systems vary widely depending on price but the typical starting values range from 1 GB - 4 GB

•The maximum is around 4 GB – 8 GB

James Tam

Small Units Of Measurement (Processor And <u>Memory Speed)</u>

•Millisecond (ms) – a thousandth of a second $(1/1,000 = 10^{-3})$

•Microsecond (μ s) - a millionth of a second (1/1,000,000 = 10⁻⁶)

• Nanosecond (ns) – a billionth of a second $(1/1,000,000,000 = 10^{-9})$

Original Determinants Of Processor Speed

- 1. Type of processor e.g., Intel: Celeron, Pentium
- 2. Clock speed
 - 1 Hz = 1 pulse is sent out each second (1 second passes between each pulse)
 - 10 Hz = 10 pulses are sent out each second (0.1 seconds passes between each pulse)
 - :
 - 25 MHz = 25 million pulses sent out each second (0.000 000 04 seconds between each pulse or 40 ns between pulses)
 - 3.8 Ghz = 3.8 billion pulses sent out each second (0.26 ns between pulses)

Common Processor Clock Speeds

•Budget processors - Laptop: 1.06 – 2.6 GHz - Desktop: 1.8 – 3 GHz

•Higher end processors -2.33 – 3 GHz

Other Factors That Could Effect Processing Speed

•Clock speed maximums have been approaching a limit:

- Heat
- Power consumption

•Consequently it's become less of determining factor in the processing speed of a computer.

•Other factors:

- Number of processing cores
- Processor cache size
- Front side bus speed

Processor Core

•A core is the part of the processor that's capable of executing instructions.

- Can perform calculations
- Has memory to store information

<text>

Common Front Side Bus Speeds

•Budget processors

- (Laptop): 800 – 1033 MHz

-(Desktop): 800 – 1333 MHz

•Higher-end processors -1066, 1333, 1600 MHz

Storage: Hard Drives

•Typical ranges: ~250 GB – 1 TB (desktops), ~120 GB – 500 GB (laptops).

•Rotational speeds: 5400, 7200, 10000+ rpm

•Type of interface: IDE/ATA (older), SATA (newer)

CD/DVD Drives

•Some considerations:

- Speed

- Single layer/single sided and dual layer/double sided
- Next generation DVD: Blu-ray, HD-DVD (discontinued)

James Tam

CD/DVD: Speed

•CD Speeds:

- Stated in the form of 3 numbers e.g., 52x32x52
- These three numbers state the maximums for:
 - •(Write speed) x (Re-write speed) x (Read speed)

•DVD Speeds:

- Sometimes they are listed in the same format as CD speeds
- Other times they are listed in the form of two numbers e.g., 16x16
 - $\bullet (\text{Write speed with `plus' DVD discs}) \ x$ (Write speed with `minus' DVD discs)
- Or they may be listed as a single number e.g., x16
 - •(Write speed with 'plus' or 'minus' DVD discs

CD/DVD: Multi-Layer, Multi-Sided

•Double sided:

- Allows information to be written on both sides of the disc

•Dual layer ("-DL")

- An extra layer of dye is added to allow for double the amount of information to be written

Туре	Capacity
Single sided, single layer	4.7GB
Single sided, dual layer	8.5GB
Double sided, single layer	8.75GB
Double sided, dual layer on one side	9.4 GB
Double sided, dual layer on both sides	15.9GB

A Next Generation DVD Format: Blu-Ray

•Uses a different light frequency for the laser.

- •Results in high capacity storage:
 - 25 GB (single layer)
 - 50 GB (dual layer)

•Backward (but not forward) compatibility is possible

<u>Some Considerations When Buying A</u> <u>Graphic/Video Card (2)</u>

- 2. Don't forget about memory (of the graphics/video card).
 - a) Video cards also have dedicated memory
 - b) All things being equal a video card with a fast GPU will deliver better performance than one with a slower GPU but more memory.
 - c) However with GPU's being equal the video card with additional memory may deliver superior performance.
 - d) Typical ranges 256 MB 1 GB.

Some Considerations When Buying A Graphic/Video Card (3)

- 3. DirectX 10 support...possibly if you have Vista.
- 4. Type of interface: PCI (very old), AGP, PCI-E (newest)

Hardware Requirements For Some Programs			
Operating system	Min RAM	Min processor speed	Hard drive space
Windows XP	64 MB	233 MHz	1.5 GB
Windows Vista (Home basic)	512 MB (32 MB graphics memory)	800 MHz	20 GB (install) + 15 GB (needed while running)
Windows Vista (Home premium, business versions)	1 GB (128 MB graphics memory)	1 GHz	40 GB + 15 GB (needed while running)

Software	Min RAM	Min processor speed	Hard drive space
Office 2003	128 MB (8 MB for each Office program running at the same time)	233 MHz	~400 MB
Office 2007	256 MB	500 MHz	1.5 GB
Halo 2 (game)	1 GB (also there's hardware requirements on graphics cards)	2 GHz	7 GB
Crysis (game)	1 GB (256 MB graphics memory)	2.8 GHz (Core 2 Duo is recommended)	12 GB

You Should Now Know

- •How computers work on a two state model
- •Common units of measurement (large and small) for computers
- •Processors
 - What are some of the factors that play a role in processing speed
 - Approximate values for processor clock speeds
- •What is a bit and what is a byte and how they are used to store information
- •The role that word size (address and data) plays in the capabilities of a computer
- •What are different types of RAM and the approximate speed of each
- •Some important things to consider with hard drives
- •Approximate storage capacities of a new hard drive today

You Should Now Know (2)

•How optical drives retrieve, store and erase information on discs

- •Technical considerations to when buying an optical drive
- •Approximate storage capacities of different optical drives
- •Some of the important considerations when buying a graphics/video card
- •How the different parts of the computer relate and how speed is determined by multiple hardware devices

James Tar