Numerical Representations On The Computer: Negative And Rational Numbers

- •How are negative and rational numbers represented on the computer?
- •How are subtractions performed by the computer?

James Tan

Subtraction

- In the real world
 - A B
- In the computer

A - B

• In the real world

A - B
In the computer

Not done this way!

AB

A + (-B)

James Tan

Binary Subtraction

- Requires the complementing of a binary number
 - i.e., A B becomes A + (-B)
- The complementing can be performed by representing the negative number as a ones or twos complement value.

James Tam

Complementing Binary Using The Ones Complement Representation

- For positive values there is no difference (no change is needed)
 - e.g., positive seven (The 'A' in the expression A B) 0111 (regular binary)

0111 (Ones complement equivalent)

- For negative values complement the number by negating the binary values: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0).
 - e.g., minus six (The 'B' in the expression A B becomes A+(-B))
 -0110 (regular binary)

1001 (Ones complement equivalent)

James Tan

Complementing Binary Using The Twos Complement Representation

- For positive values there is no difference (no change is needed)
 - e.g., positive seven (The 'A' in the expression A B)

0111 (regular binary)

0111 (Twos complement equivalent)

- For negative values complement the number by negating the number: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0) *and adding one to the result*.
 - e.g., minus six (The 'B' in the expression A B becomes A+(-B))
 -0110 (regular binary)

1010 (Twos complement equivalent)

Interpreting The Bit Pattern: Complements

- Recall:
 - Positive values remain unchanged:
 - 0110 is the same value with all three representations.
 - Negative values are converted through complementing:
 - Ones complement: negate the bits
 - -0110 becomes 1001
 - Twos complement: negate the bits and add one
 - -0110 becomes 1010
- Problem: the sign must be retained (complements don't use a minus sign).
- Approach:
 - One bit (most significant bit/MSB or the signed bit) is used to indicate the sign of the number.
 - This bit cannot be used to represent the magnitude of the number
 - If the MSB equals 0, then the number is positive e.g. 0 bbb is a positive number (bbb stands for a binary number)
 - If the MSB equals 1, then the number is negative e.g. 1 bbb is a negative number (bbb stands for a binary number)

James Tar

Summary Of The Three Binary Representations

	Positive values are represented with:	Negative values are represented with:
Regular binary	No explicit symbol is needed (rarely is a plus '+' used) e.g., 100 vs. +100	A minus '-' sign e.g., -100
Ones complement	The sign bit (MSB) is zero e.g., 0 11	The sign bit (MSB) is one e.g., 100
Twos complement	The sign bit (MSB) is zero e.g., 0 11	The sign bit (MSB) is one e.g., 100

Interpreting The Bits: All Representations

Bit pattern	Regular binary	Ones complement	Twos complement
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-7	-8
1001	9	-6	-7
1010	10	-5	-6
1011	11	-4	-5
1100	12	-3	-4
1101	13	-2	-3
1110	14	-1	-2
1111	15	-0	-1

James Tam

What You Already Should Know

- How to convert from decimal to binary.
- How to convert from binary to decimal.

What You Will Learn

• How to subtract numbers with the complement and add technique:

The operation A - B is performed as A + (-B)

Binary Subtraction Through Ones Complements

- 1) Convert from regular binary to a 1's complement representation (check if it is preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - b. If the number is preceded by a minus sign, the number is negative (complement it by flipping the bits) and remove the minus sign.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so add it back.
- 4) Convert the 1's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone)
 - b. If the MSB = 1, the number is negative (complement it by flipping the bits) and precede the number with a minus sign

James Tan

proporting pogotive and roal numbers on the

Overflow: Regular Binary

• Occurs when you don't have enough bits to represent a value (wraps –around to zero)

Value

Binary (1 bit)	Value
0	0
1	1
0	0

(Z bits)	
00	0
01	1
10	2
11	3
00	0

: :

Binary

Value
0
1
2
3
4
5
6
7

000 0

Iomas Tom

Overflow: Signed

- In all cases it occurs do to a "shortage of bits"
- Subtraction subtracting two negative numbers results in a positive number.

• Addition – adding two positive numbers results in a negative number.

Binary Subtraction Through Twos Complements

- 1) Convert from regular binary to a 2's complement representation (check if it's preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - b. If the number is preceded by a minus sign, the number is negative (complement it and discard the minus sign).
 - i. Flip the bits.
 - ii. Add one to the result.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so discard it.
- 4) Convert the 2's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone).
 - b. If the MSB = 1, the number is negative (complement it and precede the number with a negative sign).
 - i. Flip the bits.
 - ii. Add one to the result.

James Tan

proporting pogetive and real numbers on the

Representing Real Numbers Via Floating Point

• Numbers are represented through a sign bit, a mantissa and an exponent

Sign Mantissa Exponent

Examples with 5 digits used to represent the mantissa:

- e.g. One: 123.45 is represented as 12345 * 10⁻²
- e.g. Two: 0.12 is represented as 12000 * 10⁻⁵
- e.g. Three: 123456 is represented as 12345 * 101
- Using floating point numbers may result in a loss of accuracy!

James Tan

You Should Now Know

- •How negative numbers are represented using ones and twos complement representations.
- •How to convert regular binary to values into their ones or twos complement equivalent.
- •What is signed overflow and why does it occur.
- •How to perform binary subtractions via the negate and add technique.
- •How are real numbers represented through floating point representations