
Repetition in Pascal: Loops 1

James Tam

Loops In Pascal

In this section of notes you will learn how to
rerun parts of your program without having to
duplicate the code.

James Tam

The Need For Repetition (Loops)

Writing out a simple counting program (1 – 3).

program counting (output);

begin

writeln('1');

writeln('2');

writeln('3');

end.

Repetition in Pascal: Loops 2

James Tam

The Need For Repetition (2)

Simple program but what if changes need to be made?
• The source code must be re-edited and re-compiled each time that a change

is needed.

What if you need the program to count many times?

James Tam

Basic Structure Of Loops

1) Initialize the control
a) Control – typically a variable that determines whether or not the loop

executes or not.

2) Testing the control against a condition

3) Executing the body of the loop

4) Update the value of the control

Repetition in Pascal: Loops 3

James Tam

Types Of Loops

Pre-test loops
1. Initialize control
2. Check if a condition is met (using the control in some Boolean

expression)
a) If the condition has been met then continue on with the loop (go to step 3)
b) If the condition is not met then break out of the loop (loop ends)

3. Execute the body of the loop
4. Update the value of the control
5. Repeat step 2

General characteristics
• The body of the loop executes zero or more times
• Execute the body only if the condition is true (stop executing when it

becomes false)
• Examples: while-do, for

James Tam

Types Of Loops (2)

Post-test loops
1. Initialize control (sometimes this step is unneeded because the control is

set in the body, step 3)
2. Execute the body of the loop
3. Update the value of the control
4. Check if a condition is met (using the control in some Boolean

expression)
a) If the condition has been met then break out of loop (loop ends)
b) If the condition hasn't been met then continue on with loop (go to step 2)

General characteristics
• The body of the loop executes one or more times
• Execute the body only if condition is false (stop executing when it’s true)
• Examples: repeat-until

Repetition in Pascal: Loops 4

James Tam

Can be used if the number of times that the loop executes is not known in
advance.

Format:
while (Boolean expression) do

body

Example (The full program can be found in Unix under
/home/231/tamj/examples/loops/whileDo.p)

var i : integer;

i: = 1;

while (i <= 5) do

begin

writeln('i = ', i);

i := i + 1;

end; (* while *)

Pre-Test Loop: While-Do

James Tam

Can be used for almost any stopping condition. Loop executes as long as the
boolean expression is true.

Format:
while (Boolean expression) do

body

Example (The full program can be found in Unix under
/home/231/examples/loops/whileDo.p)

var i : integer;

i: = 1;

while (i <= 5) do

begin

writeln('i = ', i);

i := i + 1;

end; (* while *)

Pre-Test Loop: While-Do

1) Initialize control

2) Check condition

3) Execute body

4) Update control

Repetition in Pascal: Loops 5

James Tam

Tracing The While Loop

Variables

i
Execution
>./whileDo

James Tam

Pre-Test Loop: For

Typically used when it is known in advance how many times that
the loop will execute (counting loops). Loop executes until the
loop control would go past the stopping condition.

Format (counting up):
for initialize control to final value do

body

Format (counting down):
for initialize control downto final value do

body

Note: For loops are only supposed to count up (‘to’) or down (‘downto’) by one. If the program
must go up or down by other multiples then use a while-do loop instead. NEVER modify the
loop control of a Pascal for loop in the body of the loop!

Repetition in Pascal: Loops 6

James Tam

First For Loop Example

Example one (The full program can be found in Unix under
/home/231/tamj/examples/loops/forLoopUp.p):

begin
var i : integer;
var total : integer;
total := 0;
for i := 1 to 5 do
begin

total := total + i;
writeln('i=', i, ‘ total=', total);

end; (* for *)
end.

James Tam

First For Loop Example

Example one (The full program can be found in Unix under
/home/231/tamj/examples/loops/forLoopUp.p):

begin
var i : integer;
var total : integer;
total := 0;
for i := 1 to 5 do
begin

total := total + i;
writeln('i=', i, ‘ total=', total);

end; (* for *)
end.

1) Initialize control

i := 1

3) Update control

to
2) Test condition

to 5

4) Execute body

Repetition in Pascal: Loops 7

James Tam

Tracing The First For Loop Example

Execution
>./ forLoopUp

Variables
i total

James Tam

Second For Loop Example

Example two (The full program can be found in Unix under
/home/231/tamj/examples/loops/forLoopDown.p)

begin
var i : integer;
var total : integer;
total := 0;
for i := 5 downto 1 do
begin

total := total + i;
writeln('i=', i, ' total=',total);

end; (* for *)
end.

Repetition in Pascal: Loops 8

James Tam

Tracing The Second For Loop Example

Execution
>./forLoopDown

Variables
i total

James Tam

Post Test Loops: Repeat-Until

Can be used instead of a while-do loop if you need the loop to
execute the loop at least once. (Note: A while-loop can also be
modified so that it is guaranteed to execute at least once by
initializing the loop control to value that will result in a true
evaluation of the Boolean expression). Loop executes while
some Boolean expression is false, it stops when it’s true.

Format:

repeat

body

until (Boolean expression);

Repetition in Pascal: Loops 9

James Tam

Repeat-Until: An Example

Example:

The full version can be found in Unix under:
/home/231/tamj/examples/loops/repeatUntil.p

James Tam

Repeat-Until: An Example (2)

program repeatUntil (output);
begin

var i : integer;
i:= 1;
repeat
begin

writeln('i = ', i);
i := i + 1;

end; (* loop *)
until (i > 5);

end.

Repetition in Pascal: Loops 10

James Tam

Repeat-Until: An Example (2)

program repeatUntil (output);
begin

var i : integer;
i:= 1;
repeat
begin

writeln('i = ', i);
i := i + 1;

end; (* loop *)
until (i > 5);

end.

2) Execute body

3) Update control

4) Test condition

1) Initialize control

James Tam

Tracing Repeat-Until Loop Example

Execution
>./ repeatUntil

Variable
i

Repetition in Pascal: Loops 11

James Tam

Solving A Problem Using Loops

Write a program that will execute a game:
• The program will randomly generate a number between one and ten.
• The player will be prompted to enter their guess.
• The program will continue the game until the player indicates that they no

longer want to continue.

The full program can be found in UNIX under:
/home/231/examples/loops/guessingGame.p

James Tam

Repeat-Until: An Example (2)

var guess : integer;
var answer : integer;
var choice : char;

repeat
answer := random(10) + 1;
write('Enter your guess: ');
readln(guess);
if (guess = answer) then

writeln('You guessed correctly!')
else

writeln('You guessed incorrectly');
writeln('Number was ', answer, ', your guess was ', guess);
write('Play again? Enter “n” to quit or anything else to continue');
write('Choice: ');
readln(choice);
writeln;

until (choice = 'N') OR (choice = 'n');

Repetition in Pascal: Loops 12

James Tam

Recap: What Looping Constructs Are Available In
Pascal/When To Use Them

You want the stopping condition to be checked before the loop
body is executed (typically used when you want a loop to
execute zero or more times).

Pre-test loops

You want to execute the body of the loop before checking the
stopping condition (typically used to ensure that the body of the
loop will execute at least once).

Post-test:
Repeat-until

• A ‘counting loop’: You want a simple loop to count up or down a
certain number of times.

• For

• The most powerful looping construct: you can write a ‘while-do’ loop
to mimic the behavior of any other type of loop. In general it should
be used when you want a pre-test loop which can be used for most
any arbitrary stopping condition e.g., execute the loop as long as the
user doesn’t enter a negative number.

• While-do

When To UseConstruct

James Tam

Infinite Loops

Infinite loops never end (the stopping condition is never met).

They can be caused by logical errors:
• The loop control is never updated (Example 1 – below).
• The updating of the loop control never brings it closer to the stopping

condition (Example 2 – next slide).

Example 1 (The full version can be found in Unix under
/home/231/tamj/examples/loops/infinite1.p)

var i : integer;
i := 1;
while (i <=10) do

writeln('i=', i);
i := i + 1;

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

Repetition in Pascal: Loops 13

James Tam

Infinite Loops (2)

Example 2 (The full version can be found in Unix under
/home/231/tamj/examples/loops/infinite2.p)

var i : integer;
i := 10;
while (i > 0) do
begin

writeln('i = ', i);
i := i + 1;

end;

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Nested Loops

One loop executes inside of another loop(s).

Example structure:

Outer loop (runs n times)

Inner loop (runs m times)

Body of inner loop (runs n x m times)

Example program (the full program can be found in Unix under:
/home/231/tamj/examples/loops/nested.p)

var i : integer;
var j : integer;
for i := 1 to 2 do

for j := 1 to 3 do
writeln('i=', i, ' j=', j);

writeln('All done!');

Repetition in Pascal: Loops 14

James Tam

Testing Loops

Make sure that the loop executes the proper number of times.

Test conditions:
1) Loop does not run
2) Loop runs exactly once
3) Loop runs exactly ‘n’ times

James Tam

Testing Loops: An Example

program testLoops (input, output);
begin

var sum : integer;
var i : integer;
var last : integer;
sum := 0;
i := 1;
write('Enter the last number in the sequence to sum : ');
readln(last);
while (i <= last) do
begin

sum := sum + i;
writeln('i=', i);
i := i + 1;

end;
writeln('sum=', sum);

end.

Repetition in Pascal: Loops 15

James Tam

You Should Now Know

When and why are loops used in computer programs

What is the difference between pre-test loops and post-test loops

How to trace the execution of pre and post-test loops

How to properly write the code for a loop in a program

What are nested loops and how do you trace their execution

How to test the execution of loop

