Beyond Base 10: Non-decimal Based Number Systems

What is the decimal based number system?
How does the binary number system work
Converting between decimal and binary

James Tan

Recall: Computers Don't Do Decimal!

Most parts of the computer work in a discrete state:

- On/off
- True/false
- Yes/No

These two states can be modeled with the binary number system

James Tam

James Tam

Decimal value	Binary value	Decimal value	Binary value
)	0000	8	1000
	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Converting From Decimal To Binary

Split up the integer and the fractional portions

- 1) For the integer portion:
- a. Divide the integer portion of the decimal number by two.
- b. The remainder becomes the first integer digit of the binary number (immediately left of the decimal).
- c. The quotient becomes the new integer value.
- d. Divide the new integer value by the target base.
- e. The new remainder becomes the second integer digit of the binary number (second digit to the left of the decimal).
- f. Continue dividing until the quotient is less than two (i.e., it's zero or one) and this quotient becomes the last integer digit of the binary number.

Converting From Decimal To Binary (2)

- 2) For the fractional portion:
- a. Multiply by two.
- b. The integer portion (if any) of the product becomes the first rational digit of the binary number (first digit to the right of the decimal).
- c. The rational portion of the product is then multiplied by two.
- d. The integer portion (if any) of the new product becomes the second rational digit of the binary number (second digit to the right of the decimal).
- e. Keep multiplying by two base until:
 - a. either the resulting product equals zero,
 - b. or you have the desired number of places of precision.

James Tam

Decimal value	Binary value (calculate to a maximum of four fractional digits)
0.5	???
0.1	???
35.25	???

Converting From Binary To Decimal

Evaluate the expression: two raised to some exponent, multiply the resulting expression by the corresponding digit and sum the resulting products.

Example:

Position of digits 1 0 -1 \leftarrow Position of digits 1 1. 0 $\stackrel{\frown}{2}$ Number to be converted Value in decimal = $(1x2^{1}) + (1x2^{0}) + (0x2^{-1}) = (1x2) + (1x1) + 0 = 3$ General formula: 3 2 1 0 -1 -2 -3 \leftarrow Position of digits d7 d6 d5 d4. d3 d2 d1 $\stackrel{\frown}{b}$ Number to be converted Value in decimal = $(digit7^{*}2^{3}) + (digit6^{*}2^{2}) + (digit5^{*}2^{1}) + (digit4^{*}2^{0}) + (digit3^{*}2^{-1}) + (digit2^{*}2^{-2}) + (digit1^{*}2^{-3})$ 1 The value of this exponent will be determined by the position of the digit (superscript)

Binary value	Decimal value	
0.1	???	
0.01	???	
10000	???	
01111	???	
10001	???	

You Should Now Know

•What is meant by a number base.

•How the binary works what role it plays in the computer.

•How to convert to/from binary and decimal.

James Tam