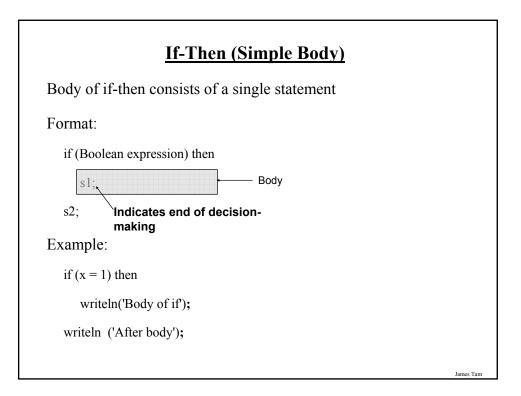
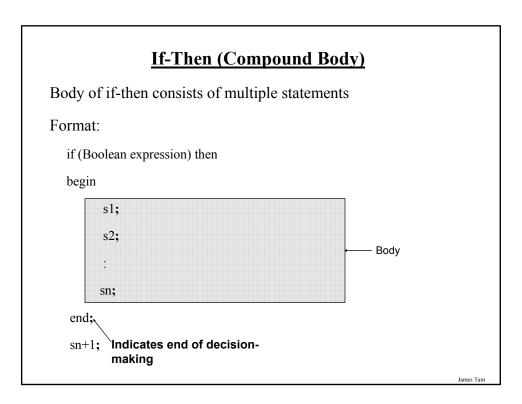

Decision-Making In Pascal

Decisions are questions with answers that are either true or false (Boolean)


Decision making constructs (mechanisms) in Pascal


- If-then
- If-then-else
- If, else-if
- Case-of

<u>A</u>		ational Operators For n Expressions	
If (operand	relational ope	erator operand) then	
Pascal	Mathematical		
operator	equivalent	Meaning	
<	<	Less than	
>	>	Greater than	
=	=	Equal to	
<=	\leq	Less than or equal to	
>=	\geq	Greater than or equal to	
\diamond	≠	Not equal to	
			James Tai

If-Then (Compound Body(2))

Example:

if (x = 1) then

begin

writeln('Body of if 1');

writeln('Body of if 2');

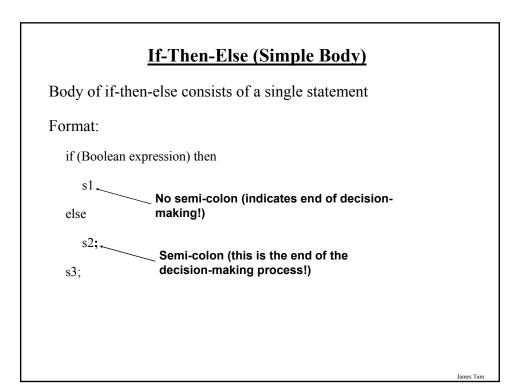
end;

writeln('after if');

<u> </u>	<u>hen-Else</u>
Decision-making with two condition	ns (true or false)
Format:	
if (operand relational operator operator	and) then
body of 'if	
else	No semi-colon (indicates end of decision making!)
body of 'else';	
additional statements;	Semi-colon (decision making is complete)

If-Then-Else

Example:


if (age ≥ 18) then

writeln('Adult')

else

writeln('Not an adult');

writeln('Tell me more about yourself');

If-Then-Else (Simple Body(2))

Example:

if (x = 1) then

writeln('body of if')

else

writeln('body of else');

writeln('after if-then-else');

	<u>If-Then-Else (Compound Body)</u>	
Body of if-the	n-else consists of multiple statements	
Format:		
if (Boolean e	expression) then	
begin		
s1;		
:		
sn;		
end		
else	[~] No semi-colon (marks end of decision-making!)	
begin		
sn+1;		
:		
sn + m;	Semi-colon (this is the end of the decision-making process!)	
end;	process:)	
sn + m + 1;		
		James Tam

If-Then (Compound Body(2))

Example:

```
if (x = 1) then
begin
writeln('Body of if 1');
writeln('Body of if 2');
end
else
begin
writeln('Body of else 1');
writeln('Body of else 2');
end;
writeln('after if-then-else');
```

Decision-Making With Multiple Expressions

Format:

if (Boolean expression) logical operator (Boolean expression) then

body;

Example:

if (x > 0) AND (y > 0) then

writeln ('X is positive, Y is positive');

Decision-Making With Multiple Expressions (2)

Built-in logical operators in Pascal

OR

AND

XOR

NOT

(NAND and NOR can be constructed by combining NOT with AND & NOT with OR)

Forming Compound Boolean Expressions With The "OR" Operator

Format:

if (Boolean expression) OR (Boolean expression) then

body;

Example:

if (gpa > 3.7) OR (yearsJobExperience > 5) then

writeln('You are hired');

James Tam

<u>Forming Compound Boolean Expressions</u> <u>With The "AND" Operator</u>

Format:

if (Boolean expression) AND (Boolean expression) then

body;

Example:

if (yearsOnJob <= 2) AND (isGoofOff = True) then

writeln('You are fired');

Forming Compound Boolean Expressions With The "XOR" Operator

Format:

if (Boolean expression) XOR (Boolean expression) then

body;

Example:

if (takesFirstJob = true) XOR (takesSecondJob = true) then

isEmployed := true;

<u>Forming Compound Boolean Expressions</u> <u>With The "NOT" Operator</u>

Format:

if NOT (Boolean expression) then

body;

Examples:

if NOT (x AND y) then

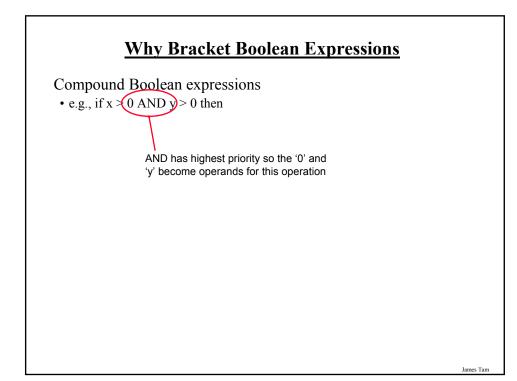
writeln('NAND');

if NOT (x OR y) then

writeln('NOR');

 Order
 Operator

 1
 NOT


 2
 * / DIV MOD AND

 3
 + - OR

 4
 < > = <= >= <>

Why Bracket Boolean Expressions

Compound Boolean expressions • e.g., if x > 0 AND y > 0 then

Nested Decision Making

One decision is made inside another

Outer decisions must evaluate to true before inner decisions are even considered for evaluation.

Format:

if (Boolean expression) then

if (Boolean expression) then	l	Outer body
inner body		Inner body

Example:

if (num1 > 0) then

if (num2 > 0) then

writeln('Both numbers are positive');

Nested Decision Making: The Dangling Else

if (x > 0) then

if (y > 0) then

writeln('x is greater than zero, y is greater than zero')

else

writeln('x is greater than zero');

James Tam

The Dangling Else Reformatted

if (x > 0) then

if (y > 0) then

writeln('x and y greater than zero')

else

writeln('x greater than zero');

James Tam

Decision-Making With Multiple Alternatives

if-then

Checks a condition and executes the body of code if the condition is true

if-then-else

Checks a condition and executes one body of code if the condition is true and another body if the condition is false

Approaches for multiple alternatives

Multiple if's

Multiple else-if's

Multiple If's: Non-Exclusive Conditions

Any, all or none of the conditions may be true (independent)

Format:

if (Boolean expression 1) then

body 1;

if (Boolean expression 2) then

body 2;

:

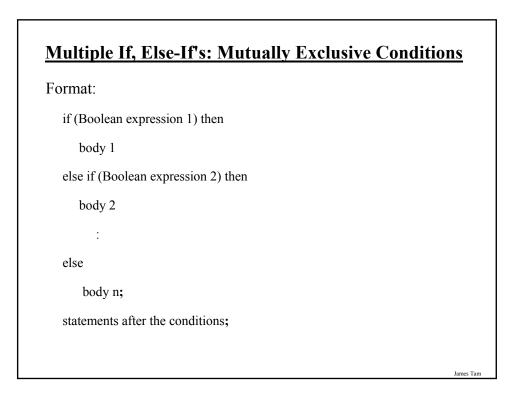
statements after the conditions;

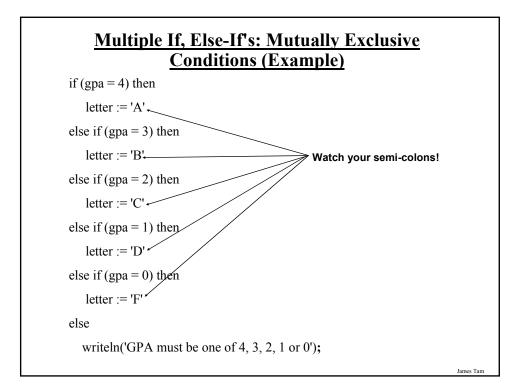
Multiple If's: Non-Exclusive Conditions (Example)

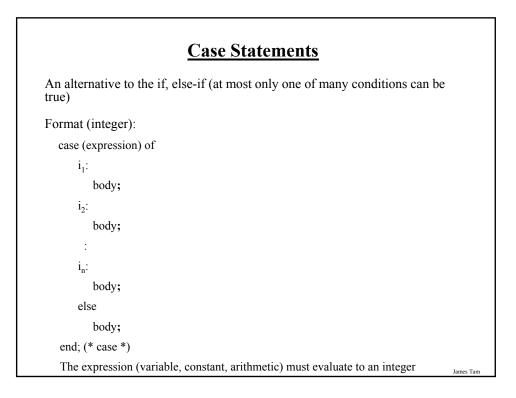
if (x > 0) then

writeln('X is positive');

if (y > 0) then


writeln('Y is positive');


if (z > 0) then


writeln('Z is positive');

James Tam

Multiple If's: Mutually Exclusive Conditions	
At most only one of many conditions can be true Inefficient	
Can be implemented through multiple if's combination!	
Example (for full example look in Unix under /home/231/examples/decisions/inefficientDecisionMaking.p)	
if $(gpa = 4)$ then	
letter := 'A';	
if $(gpa = 3)$ then	
letter := 'B';	
if $(gpa = 2)$ then	
letter := 'C';	
if $(gpa = 1)$ then	
letter := 'D';	
if $(gpa = 0)$ then	
letter := 'F';	
	James Tam

Case Statements: Integer Example

Example (look for complete example in Unix under /home/231/examples/decisions/caseOf1.p):

case (gpa) of

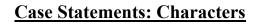
4: writeln('You got an A');
3: writeln('You got a 'B');
2: writeln('You got a C');

1:

writeln('You got a D');

0:

writeln('You got an F');


Case Statements: Integer Example (2)

else

writeln('GPA must be one of 4, 3, 2, 1 or 0');

end; (* case *)

James Tam

Format (char):
case (expression) of
'c ₁ ':
body;
°c ₂ ':
body;
:
°c _n ':
body;
else
body;
end; (* case *)

The expression (variable, constant, arithmetic) must evaluate to a character

James Tam

Case Statements: Character Example

Example (look for complete example in Unix under /home/231/examples/decisions/caseOf2.p):

```
'B':
writeln('GPA = 3');
```

'C':

writeln('GPA = 2'); 'D':

writeln('GPA = 1');

'F':

writeln('GPA = 0');

Case Statements: Character Example (2)

else

writeln('Letter grade must be one of an "A", "B", "C", "D" or "F"'); end; (* case *)

James Tam

<u>Recap: What Decision Making Constructs Are</u> <u>Available In Pascal/When To Use Them</u>

Construct	When To Use
If-then	Evaluate a Boolean expression and execute some code (body) if it's true
If-then-else	Evaluate a Boolean expression and execute some code (first body) if it's true, execute alternate code (second body) if it's false
Multiple if's	Multiple Boolean expressions need to be evaluated with the answer for each expression being independent of the answers for the others (non-exclusive). Separate code (bodies) can be executed for each expression.
If, else-if	Multiple Boolean expressions need to be evaluated but zero or at most only one of them can be true (mutually exclusive). Zero or one body will execute.
Case-of	Similar to the 'if, else-if' but results in smaller (cleaner) programs but only works for specific situations (Boolean expressions that involve characters or integer values only).

Construct	When To Use
Compound decision making	More than one Boolean expression must be evaluated before some code (body) can execute.
Nested decision making	The outer Boolean expression must be true before the inner expression will even be evaluated.

Testing Decision Making Constructs

Make sure that the body of each decision making construct executes when it should.

Test:

- 1) Obvious true cases
- 2) Obvious false cases
- 3) Boundary cases

Testing Decisions: An Example

program testDecisions (input, output);

begin

var num : integer;

write('Enter a value for num: ');

readln(num);

if $(num \ge 0)$ then

writeln('Num is non-negative: ', num)

else

writeln('Num is negative: ', num);

end.

Avoid Using Real Values When An Integer Will Do program testExample; begin var num : real; num := 1.03 - 0.42; if (num = 0.61) then writeln('Sixty one cents') else writeln('Not sixty one cents'); end.

James Tam

You Should Now Know

What are the four decision making constructs available in Pascal:

- If-then
- If-then-else
- If, else-if
- Case-of
- How does each one work
- When should each one be used

How to evaluate and use decision making constructs:

- Tracing the execution of simple decision making constructs
- Where are semi-colons needed in decision making constructs and why are they needed
- How to evaluate nested and compound decision making constructs and when to use them

James Tam

You Should Now Know (2)

How the bodies of the decision making construct are defined:

- · What is the body of decision making construct
- What is the difference between decision making constructs with simple bodies and those with compound bodies

What is an operand

What is a relational operator

What is a Boolean expression

How multiple expressions are evaluated and how the different logical operators work

How to test decision making constructs