
Getting Started With Pascal Programming 1

James Tam

Getting Started With Pascal
Programming

How are computer programs created

What is the basic structure of a Pascal Program

Variables and constants

Input and output

Pascal operators

Common programming errors

Introduction to program design

James Tam

Computer Programs

1) A programmer
writes a computer
program 2) The compiler

translates the
program into a
form that the
computer can
understand 4) Anybody who has

this executable
installed on their
computer can run
(use) it.

3) An
executable
program is
created

Binary is the language of the computer

Getting Started With Pascal Programming 2

James Tam

Translators

Convert computer programs to machine language

Types
1) Interpreters

• Each time that the program is run the interpreter translates the program
(translating a part at a time).

• If there are any errors during the process of interpreting the program, the
program will stop running right when the error is encountered.

2) Compilers
• Before the program is run the compiler translates the program (compiling it all

at once).
• If there are any errors during the compilation process, no machine language

executable will be produced.
• If there are no errors during compilation then the translated machine language

program can be run.

James Tam

Compiling Programs: Basic View

gpc

Pascal
compiler

input a.out

Machine
language
program

outputfilename.p

Pascal
program

Getting Started With Pascal Programming 3

James Tam

Basic Structure Of Pascal Programs

Program documentation

program name (input, output);

Part I: Header

const

:

Part II: Declarations

begin

:

end.

Part III: Statements

Program name.p (Pascal source code)

James Tam

Details Of The Parts Of A Pascal Program

Part I: Header
• Parts:

1) Program documentation
- What does the program do, author(s), version number, date of last

modification etc.
- Comments for the reader of the program (and not the computer)

(* Marks the beginning of the documentation
*) Marks the end of the documentation

2) Program heading
- Keyword: program, Name of program, if input and/or output operations

performed by the program.

• Example
(*
* Tax-It v1.0: This program will electronically calculate your tax return.

*)

program taxIt (input, output);

Documentation

Heading

Getting Started With Pascal Programming 4

James Tam

Details Of The Parts Of A Pascal Program (2)

Part II: Declarations
• List of constants
• More to come later during this term regarding this section

Part III: Statements
• The instructions in the program that actually gets things done
• They tell the computer what to do as the program is running
• Statement are separated by semicolons ";"
• Much more to come later throughout the rest of the term regarding this

section

James Tam

The Smallest Pascal Program

program smallest;

begin

end.

Note: The name in the header "smallest" should match the filename "smallest.p". You
can find an online version of this program in the Unix file system under
/home/231/tamj/examples/intro/smallest.p (the compiled version is called "smallest").

Getting Started With Pascal Programming 5

James Tam

Creating And Compiling Programs On The
Computer Science Network

filename.p
(Unix file)

Pascal program
XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

To begin creating the Pascal program
in Unix type "XEmacs filename.p"

To compile the program in
Unix type "gpc filename.p"

To run the program in Unix
type "./a.out"

James Tam

Source Code Vs. Executable Files

Source code
• A file that contains the Pascal program code.
• It must end with a ‘dot-p’ suffix (program name.p).
• Can be viewed and edited.
• Cannot be executed.

Executable code
• A file that contains machine language (binary) code.
• By default this file will be called “a.out”.
• It cannot be directly viewed or edited (meaningless).
• It can be executed.

program smallest;
begin

: :
end.

ELF^A^B^A^@^@^
@^@^@^@^@^@^
@^@^B^@^B^@^@
^@^A^@^A^Zh^@^
@^@4^@^B\263\37
0^@^@^@^@^@4^
@
^@^E^@(^@^]^@^Z
^@^@^@^F^@^@^\

: :

Getting Started With Pascal Programming 6

James Tam

Variables

Set aside a location in memory
• This location can store one ‘piece’ of information

Used to store information (temporary)
• At most the information will be accessible as long as the program runs

Types:
• integer – whole numbers
• real – whole numbers and fractions
• char – alphabetic, numeric and miscellaneous symbols (in UNIX type

“man ascii”)
• boolean – a true or false value

Usage (must be done in this order!)
• Declaration
• Accessing or assigning values to the variables

Picture from Computers in your future by Pfaffenberger B

James Tam

Declaring Variables

Sets aside memory

Memory locations are addressed through the name of the variable

RAM

Name of
variable RESERVED

Getting Started With Pascal Programming 7

James Tam

Declaring Variables

Program documentation

program name (input, output);

Part I: Header

const

:

Part II: Declarations

begin

end.

Part III: Statements

Declare variables between the ‘begin’ and ‘end.’

Declare variables here

James Tam

Declaring Variables (3)

Format:

var name of first variable : type of first variable;

var name of second variable : type of second variable;

Examples:

var height : real;

var weight : real;

var age : integer;

Getting Started With Pascal Programming 8

James Tam

Variable Naming Conventions

• Should be meaningful
• Any combination of letters, numbers or underscore (can't

begin with a number and shouldn't begin with an underscore)
• Can't be a reserved word (see the “Reserved Words” slide)
• Avoid using predefined identifiers (see the “Standard

Identifiers” slides)
• Avoid distinguishing variable names only by case
• For variable names composed of multiple words separate each

word by capitalizing the first letter of each word (save for the
first word) or by using an underscore.

James Tam

Variable Naming Conventions (2)

• Okay:
- tax_rate
- firstName

• Not Okay (violate Pascal syntax)
- 1abc
- test.msg
- good-day
- program

• Not okay (bad style)
- x
- writeln

Getting Started With Pascal Programming 9

James Tam

Reserved Words

Have a predefined meaning in Pascal that cannot be changed

whilewhilevaruntiltypetothensetrepeat

recordprogramprocedurepackedorofnotnilmod

labelinifgotofunctionforwardforfileend

elsedowntododivconstcasebeginarrayand

For more information on reserved words go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identifiers

Have a predefined meaning in Pascal that SHOULD NOT be changed

Predefined constants
• false
• true
• maxint

Predefined types
• boolean
• char
• integer
• real
• text

Predefined files
• input
• output

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 10

James Tam

Standard Identifiers (2)

Predefined functions

truncsuccsqrtsqrsin

roundpredordoddlnexp

eolneofcoschrarctanabs

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identifiers (3)

writelnwriteunpack

rewriteresetreadlnreadput

pagepacknewgetdispose

Predefined procedures

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 11

James Tam

Accessing Variables

Can be done by referring to the name of the variable

Format:
name of variable

Example:
num

James Tam

Assigning Values To Variables

Format:
Destination := Source; 1

Example:
var principle : real;
var rate : real;
var interest : real;
var amount : real;
var initial : char;

interest := principle * rate;
initial := ‘j’;

1 The source can be any expression (constant, variable or mathematical formula)

NO!

Getting Started With Pascal Programming 12

James Tam

Assigning Values To Variables

Format:
Destination := Source; 1

Example:
var principle : real;
var rate : real;
var interest : real;
var amount : real;
var initial : char;

principle := 100;
rate := 0.1;
interest := principle * rate;
amount := principle + interest;
initial := ‘j’;

1 The source can be any expression (constant, variable or mathematical formula)

James Tam

Assigning Values To Variables (2)

Avoid assigning mixed types:

program variableExample;
begin

var num1 : integer;
var num2 : real;

num1 := 12;
num2 := 12.5;
num2 := num1;

end.

num1 := num2;

Not allowed!

Rare

Getting Started With Pascal Programming 13

James Tam

Reminder: Variables Must First Be Declared Before
They Can Be Used! (The Right Way)

Correct:
RAM

var num : integer;

num

num := 888;

888

James Tam

Reminder: Variables Must First Be Declared Before
They Can Be Used! (The Wrong Way)

Incorrect:
RAM

var num : integer;

num := 888;

Compile
Error:

Where is
num???

Getting Started With Pascal Programming 14

James Tam

Named Constants

A memory location that is assigned a value that cannot be changed

Declared in the constant declaration ("const") section

The naming conventions for choosing variable names generally apply to
constants but the name of constants should be all UPPER CASE. (You can
separate multiple words with an underscore).

Format:

const

NAME_OF_FIRST_CONSTANT = value of first constant;

NAME_OF_SECOND_CONSTANT = value of second constant;

etc.

James Tam

Named Constants (2)

Examples:

const

TAX_RATE = 0.25;

SAMPLE_SIZE = 1000;

YES = True;

NO = False;

Getting Started With Pascal Programming 15

James Tam

Declaring Named Constants

Program documentation

program name (input, output);

Part I: Header

const
Part II: Declarations

begin

: :

end.

Part III: Statements

Named constants are declared in the declarations section

Declare constants here

James Tam

Purpose Of Named Constants

1) Makes the program easier to understand

populationChange := (0.1758 – 0.1257) * currentPopulation;

Vs.

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

populationChange := (BIRTH_RATE – DEATH_RATE) *

currentPopulation;

Magic Numbers
(avoid whenever
possible!)

Getting Started With Pascal Programming 16

James Tam

Purpose Of Named Constants (2)

2) Makes the program easier to maintain
- If the constant is referred to several times throughout the program,

changing the value of the constant once will change it throughout the
program.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

Getting Started With Pascal Programming 17

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.5;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.01;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

Getting Started With Pascal Programming 18

James Tam

Output

Displaying information onscreen

Done via the write and writeln statements

Format:
(Displaying a “literal string” of characters)
write (‘a message');

or
writeln(‘a message');

(Displaying the contents of a variable or constant)
write(<name of variable> or <constant>);

or
writeln (<name of variable> or <constant>);

(Displaying mixed output: literal strings, the contents of variables and
constants)

write('message', <name of variable>, 'message'…);
or

writeln('message', <name of variable>, 'message'…);

James Tam

Output (2)

Example:
program simple (output);
begin

writeln(‘The output.’);
end.

Getting Started With Pascal Programming 19

James Tam

Output (3)

Example:
program outputExample (output);
begin
var num : integer;
num := 10;
writeln('line1');
write('line2A');
writeln('line2B');
writeln(num);
writeln('num=', num);

end.

James Tam

Formatting Output

Automatic formatting of output
• Field width: The computer will insert enough spaces to ensure that the

information can be displayed.
• Decimal places: For real numbers the data will be displayed in exponential form.

Manually formatting of output:

Format:
write or writeln (<data>: <Field width for data1>: <Number decimal places for real data1>);

Examples

var num : real;

num := 12.34;

writeln(num);

writeln(num:5:2);

1 These values can be set to any non-negative integer (zero or greater).

Getting Started With Pascal Programming 20

James Tam

Formatting Output (2)

If the field width doesn’t match the actual size of the field
• Field width too small – extra spaces will be added for integer variables

but not for other types of data.
• Examples:

var num : integer;
num := 123456;
writeln(num:3);
writeln('123456':3);

• Field width too large – the data will be right justified (extra spaces will be
put in front of the data).

• Examples:
var num : integer;
num := 123;
writeln(num:6);
writeln('123':6);

James Tam

Formatting Output (3)

If the number of decimal places doesn’t match the actual number
of decimal places.
• Set the number of decimal places less than the actual number of decimal

places – the number will be rounded up.
• Example One:

var num : real;
num := 123.4567;
writeln (num:6:2);

• Set the number of decimal places greater than the actual number of decimal
places – the number will be padded with zeros.

• Example Two:
var num : real;
num := 123.4567;
writeln(num:6:6);

Getting Started With Pascal Programming 21

James Tam

Recall: How Keyboard Input Works

The electrical impulse is sent via a
wired or wireless connection

Keyboard: A
key is pressed

Keyboard controller: based on the
electrical impulses it determines
which key or combination of keys
was pressed

Keyboard buffer: stores the
keystrokes

...elppA
The keyboard controller transmits
an interrupt request

Operating system

James Tam

Recall: How Keyboard Input Works

Operating system:

Q: Is the key combination a (an
operating) system level command
e.g., <alt>-<ctrl>-?

Yes

Execute operating system
instructionNo

Pass the key combination
onto current application

Getting Started With Pascal Programming 22

James Tam

Input

The computer program getting information from the user

Done via the read and readln statements

Format:
read (<name of variable to store the input>);

or
readln (<name of variable to store the input>);

James Tam

Input (2)

Example:
program inputExampleOne (input);
begin

var num : integer;
write(‘Enter an integer: ‘);
readln (num);

end.

Getting Started With Pascal Programming 23

James Tam

Input: Read Vs. Readln

Both:
• Reads each value entered and matches it to the corresponding variable.

- e.g., read (num)
- If num is an integer then the read statement will try to read an integer value from

the user’s keyboard input.

Read
• If the user inputs additional values before hitting enter, the additional

values will remain on the ‘input stream’.

Readln
• Any additional values entered before (and including) the enter key will be

discarded.

James Tam

Read: Effect On The Keyboard Buffer

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
read(num);

end.

Pascal program

Keyboard: user
types in 27 and
hits enter

Getting Started With Pascal Programming 24

James Tam

Read: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
read(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

Y Y N
Note: after the read
statement has
executed the pointer
remains at the EOL
marker.

27

RAM
num

James Tam

Readln: Effect On The Keyboard Buffer

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program

Keyboard: user
types in 27 and
hits enter

Getting Started With Pascal Programming 25

James Tam

Readln: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

Y Y N

27

RAM
num

Note: Unlike read, the
readln will move the
pointer past the EOL
marker (input buffer is
emptied and ready for
new input).

James Tam

Readln: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

N

Note: Unlike read, the
readln will move the
pointer past the EOL
marker (input buffer is
emptied and ready for
new input).

27

RAM
num

Getting Started With Pascal Programming 26

James Tam

Read Vs. Readln

•If no input is read in by the program after a ‘read’ or ‘readln’
statement then both approaches appear identical (the effect of
the pointer staying or moving past the EOL marker has no
visible effect).

•Caution! If the ‘read’ or ‘readln’ statement is followed by
another read or readln then the effect of the extra input
remaining in the keyboard buffer can have unexpected
consequences!

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

After this readln
the program
ends and the
keyboard buffer
is emptied.

James Tam

Input: Read Vs. Readln (An Example)

For the complete version of this program look in Unix under:
/home/231/tamj/examples/intro/read1.p (or read1 for the compiled version):

program read1 (input, output);
begin

var num1 : integer;
var num2 : integer;
write(‘Enter a number: ');
read(num1);
write(‘Enter a number: ');
read(num2);
writeln('You entered these numbers: ’

'First: ', num1, ' Second: ', num2);
end.

Getting Started With Pascal Programming 27

James Tam

Input: Read Vs. Readln (An example (2))

For the complete version of this program look in Unix under:
/home/231/tamj/examples/intro/read2.p (or read2 for the compiled version)

program read2 (input, output);
begin

var num1 : integer;
var num2 : integer;
write(‘Enter a number: ');
readln(num1);
write(‘Enter a number: ');
readln(num2);
writeln('You entered these numbers: ’

'First: ', num1, ' Second: ', num2);
end.

James Tam

General Rule Of Thumb

When getting input from the user unless there’s a compelling
reason you should use ‘readln’ rather than ‘read’.

Getting Started With Pascal Programming 28

James Tam

Another Use For Readln

As an input prompt

e.g.,
writeln('To continue press enter');
readln;
writeln(‘The rest of the program continues..’);

When this
statement is
reached the
program will pause
and wait for input
from the user.

James Tam

Testing Inputs

program inputChecking (input, output);

begin

var num : integer;

var ch : char;

write('Enter a number and a character: ');

read(num, ch);

writeln('num:', num, '-ch:', ch, '-');

end.

Getting Started With Pascal Programming 29

James Tam

Performing Calculations

MODRemainder (modulo)

DIVInteger division

/Real number division

*Multiplication

-Subtraction

+Addition

Symbol (Operator)Operation

James Tam

Common Programming Errors

1. Syntax/compile errors

2. Runtime errors

3. Logic errors

Getting Started With Pascal Programming 30

James Tam

1. Syntax/Compile Errors

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Syntax error:

No executable
(a.out)
produced.

James Tam

2. Runtime Errors

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out

Runtime error

(execution stops)

Getting Started With Pascal Programming 31

James Tam

3. Logic Errors

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out
Program finishes
executing but it
may produce an
incorrect result

James Tam

You Should Now Know

What is the difference between the two types of translators:
compilers and interpreters.

What is the basic structure of a Pascal program.

How to create, compile and run Pascal programs on the
Computer Science network.

Variables:
• What are they and what are they used for
• How to set aside memory for a variable through a declaration
• How to access and change the value of a variable
• Conventions for naming variables

Getting Started With Pascal Programming 32

James Tam

You Should Now Know (2)

Constants:
• What are named constants and how do they differ from variables
• How to declare a named constant
• What are the benefits of using a named constant

Output:
• How to display text messages or the value of a memory location (variable

or constant) onscreen with write and writeln
• How to format the output of a Pascal program

Input:
• How to get a program to acquire and store information from the user of the

program
• What is the difference between read and readln
• How to perform input checking

James Tam

You Should Now Know (3)

How are common mathematical operations performed in Pascal.

What are the three common programming errors, when do they
occur and what is the difference between each one.

