Pointers

In this section of notes you will learn
about another type of variable that
stores addresses rather than data

James Tam

Memory: What You Know

*Memory is analogous to a series of slots each of which can
store a single piece of information.

1000 1001 1002
S.F. Adams| S. Bill C. Brown
[100] [] []
1003 1004 1005

J. Chan

[40] | [] []
1006 1007 1008
L L] []

James Tam

Memory: What You Will Learn

*How a memory location can contain the address of another
location in memory.

1000 1001
S.F. Adams| S.Bill

[100 | g]

1003 1004

J. Chan

[40] | []) []
1006 1007 1008

[]| [1999 []

James Tam

Why Bother With Pointers?

The answer to this question will be deferred until the next
section of notes (linked lists).

James Tam

Types Of Variables: What You Know

Pascal
Variables

/

1.Data

a. Simple b. Aggregate
(atomic) (composite)

N

integer char boolean real Homogenous Heterogeneous
(arrays) (records)

James Tam

Types Of Variables: What You Will Learn

Pascal
Variables
1 -Data/\z' Addresses
(pointers)
a. Simple b. Aggregate
(atomic) (composite)
integer char boolean real Homogenous Heterogeneous

(arrays) (records)

James Tam

Declaration Of Pointer Variables

Format:

type
type name =" type pointed to';

begin

var pointer name : type name,

Example:

type
IntegerPointer = "integer;

begin
var numPtrl : IntegerPointer;

1 An alternative is to use the “at-sign” @ instead of the “up-arrow” * to
declare a pointer variable (not recommended) James Tam

Allocating Memory For Pointers

* It involves reserving some dynamic memory and having the
pointer point to that memory.

Format

new (pointer name);
Example

new (numPtrl);

James Tam

De-Allocating Memory For Pointers

* Returning back the dynamically allocated memory (if it’s
needed it can then be re-used for something else).

Format
dispose (pointer name);

Example
dispose (numPtrl);

James Tam

De-Allocating Memory For Pointers: Followup
+ Should also be followed by having the pointer no longer
point to the memory that has just been de-allocated

Format:

pointer name = NIL;

Example
numPtrl ;= NIL;

James Tam

Using Pointers

Important! Are you dealing with the pointer or what the
pointer is pointing to (allocated memory)?

*Pointer name

*Pointer name " (de-reference pointer)

James Tam

Using Pointers

Important! Are you dealing with the pointer or what the
pointer is pointing to (allocated memory)?

*Pointer name

pointe@

*Pointer name " (de-reference pointer)

pointer| X variable@

James Tam

Accessing Pointers

Format:
(Pointer)
pointer name

(Memory pointed to)
pointer name "

James Tam

Accessing Pointers (2)

Example:

type
IntegerPointer = "integer;

begin
var numPtrl : IntegerPointer;

new(numPtr1);

(Pointer)
writeln(numPtrl);

(Memory pointed to)

writeln(numPtr1”);

James Tam

Accessing Pointers (2)

Example:

type
IntegerPointer = “integer;

begin
var numPtrl : IntegerPointer;
new(numPtrl);

(Pointer)

WIT trl);

(Memory pointed to)

writeln(numPtr1”);

James Tam

Using Pointers : Allowable Operations

Assignment =
Relational

* Equality
* Inequality <>

James Tam

Using Pointers : Assignment

Format:
(Pointer)

pointer name = pointer name,

(Memory pointed to)

pointer name ™ ;= expression,

Example:
(Pointer)

numPtrl := numPtr2;

(Memory pointed to)
numPtr1” :=100;

James Tam

Using Pointers : Allowable Operations (Equality)

Format:
(Pointer)

if (pointer name 1 = pointer name 2) then

(Memory pointed to)

if (pointer name 1™ = pointer name 2*) then

Example:
(Pointer)
if (numPtrl = numPtr2) then

(Memory pointed to)

if (mumPtr1” = numPtr2") then

James Tam

Using Pointers : Allowable Operations (Inequality)

Format:
(Pointer)

if (pointer name 1 <> pointer name 2) then

(Memory pointed to)

if (pointer name 1™ <> pointer name 2") then

Example:
(Pointer)
if (numPtr]l <> numPtr2) then

(Memory pointed to)
if (numPtr1”® <> numPtr2”) then

James Tam

Pointers : First Example

program pointerl (output);
type
IntegerPointer = “integer;
begin
var num : integer;
var numPtr] : IntegerPointer;
var numPtr2 : IntegerPointer;
writeln('"Example 1');
num := 10;
new(numPtrl);
new(numPtr2);
numPtrl” :=100;
numPtr2” := 100;
writeln('num = ":11, num:3);
writeln('numPtr1” =":11, numPtr1”:3);
writeln('"numPtr2” =":11, numPtr2":3);

James Tam

Pointers : First Example (2)

if (numPtrl = numPtr2) then
writeln('Same memory')

else
writeln('Separate memory');

if (numPtrl *= numPtr2") then
writeln('Same data')

else
writeln('Different data');

(* Not allowed *)

(*writeln('numPtr1=",numPtr1); *)

writeln('"Example 2');

num := numPtrl”;

writeln('num = ":11, num:3);
writeln('numPtr1” =":11, numPtr1:3);
num := 33;

writeln('num = ":11, num:3);
writeln('numPtr1” = ":11, numPtr1":3);
writeln;

James Tam

Pointers: First Example (3)

writeln("Example 3');
numPtr2 » = 66;
numPtrl := numPtr2;
if (numPtrl = numPtr2) then
writeln('Same memory')
else
writeln('Separate memory');
numPtr2” := 33;
writeln('numPtr1” =":11, numPtr1");
writeln('numPtr2” = ":11, numPtr2");

dispose(numPtr1);
(* dispose(numPtr2); *)

(* Indicating that neither pointer points to any memory *)
numPtrl ;= NIL;
numPtr2 ;= NIL;

end.

James Tam

RAM: How Things Are Divided Up

Memory that’s allocated for programs
that are running

Executable e.g., a.out (binary, machine
language instructions)

Static memory: global constants and
variables (3/

GLOBALS
program test;
const

SIZE= 10;
var
num : integer;

begin

end.

Dynamic memory: ‘The stack’ for

parameters and local variables (3~

Dynamic memory: ‘The heap’ for memory

allocated through a pointer /Q)
THE HEAP

new (pointer);

THE STACK

procedure proc (num1 :
integer);

var
numz2 : integer;
begin
var num3 : integer;

end;

James Tam

Pointers And Parameter Passing

Value parameters

*In the call to the module what’s passed in is a copy of the value

stored in the parameter.

*The header for the module declares the name of the local
identifier/local variable used to store the value stored in the

parameter.

Variable parameters

*In the call to the module what’s passed in is the address of the

variable.

*The header for the module declares the name of the local pointer that

is used to store the address of the parameter-.

*The pointer is automatically de-referenced (to change the original
parameter) whenever the local identifier is accessed.

James Tam

Pointers And Parameter Passing (2)
program parameters (output);

procedure proc (numl : integer;
var num? : integer);

begin
numl = 10;
num?2 := 20;
end;
begin

var numl : integer;
var num?2 : integer;

numl :=1;
num?2 :=2;
end.

James Tam

Parameter Passing: Rules Of Thumb You Should
Know For Data Parameters

Value parameters

*Data: What’s passed in cannot change (changes are made to a local
copy).

Variable parameters

*Data: What’s passed in can change (changes are made to the original
parameter)

James Tam

Parameter Passing: Rules Of Thumb You Should
Learn For Pointer Parameters

Value parameters (pointer parameter)

*Pointers: What’s passed in (a pointer) cannot change (changes are made to a
local copy of the pointer).

Variable parameters (pointer parameter)

*Pointers: What’s passed in (a pointer) can change (changes are made to the
original pointer parameter)

Value or variable parameters (what the pointer parameter points to)

*Value parameter:

— A local copy of the pointer is made for the module which contains the address of
a data variable.

— This allows the data referred to by the pointer to be changed.
*Variable parameter:

— The address of the pointer parameter is passed to another local pointer (pointer to
a pointer).

— Again this allows the data referred to by the pointer to be changed.

James Tam

Pointers As Value Parameters

Need to define a type for the pointer first!
Format (defining a type for the pointer):
type

<pointer name> =" <type pointed to>;
Format (passing pointer):
procedure procedure name (pointer name (1) : type of pointer (1);
pointer name (2) : type of pointer (2);

pointer name (n) : type of pointer (n));

function function name (pointer name (1) : type of pointer (1);
pointer name (2) : type of pointer (2),

pointer name (n) : type of pointer (n));

James Tam

Pointers As Value Parameters (2)
Example (defining a type for the pointer)

type

CharPointer = “char;

Example (passing pointer):
procedure procl (aCharPointer : CharPointer);
begin

end;

James Tam

Pointers As Variable Parameters

Need to define a type for the pointer first!
Format (defining a type for the pointer):
type

<pointer name> =" <type pointed to>;
Format (passing pointer):
procedure procedure name (var pointer name (1) : type of pointer (1),
var pointer name (2) : type of pointer (2);

var pointer name (n) : type of pointer (n));

function function name (var pointer name (1) : type of pointer (1);

var pointer name (2) : type of pointer (2);

var pointer name (n) : type of pointer (n));

James Tam

Pointers As Variable Parameters

Need to define a type for the pointer first!
Example (defining a type for the pointer)

type
CharPointer = "char;

Example (passing pointer):
procedure procl (var aCharPointer : CharPointer);
begin

end;

James Tam

Pointers: Second Example

A full version of this program can be found in Unix under:
/home/23 1/examples/pointers/pointer2.p

program pointer2 (output);

type
CharPointer = “char;

procedure procl (charPtr : CharPointer);
var
temp : CharPointer;
begin
writeln;
writeln(‘Proc1');
new(temp);
temp” :="A";
charPtr := temp;
writeln('temp” =", temp”);
writeln('charPtr® ="', charPtr);
end; James Tam

Pointers: Second Example (2)

procedure proc2 (var charPtr : CharPointer);
var
temp : CharPointer;
begin
writeln;
writeln(‘Proc2');
new(temp);
temp” :="A";
charPtr := temp;
writeln(‘temp” =", temp”);
writeln('charPtr* ="', charPtr");

end;

James Tam

Pointers: Second Example (4)

begin (* Main program *)
var charPtr : CharPointer;
new (charPtr);
charPtr” :="a';
writeln;
writeln(‘Main program.');
writeln('charPtr® ="', charPtr);
procl(charPtr);
writeln('After procl');
writeln('charPtr® ="', charPtr);
proc2(charPtr);
writeln('After proc2");
writeln('charPtr® ="', charPtr);
writeln;

end. (* End of main program *)

James Tam

Summary: Passing Pointers As Parameters

Reminder of the notation

gsze?f@;h;x Contents of the pointer @ XXX
\] J
Y Y
The
The address
address
that the
of the .
. pointer
variable o ,
points to
A A
[\ [A\

numPtr @ 100| Points @ 71000

James Tam

Summary: Passing Pointers As Value Parameters

Modulel calls Module2 and passes ‘aPointer’ as a value
parameter e.g., ‘procl’in the previous example

module Module2 (In: copy of aPointer)
aPointer Points aPointer Points
@=100 | ¢ @ = 10000 @=200 | o @ = 10000

- J

Changes made to
aPointer in module2
only change the local

pointer
‘The/Heap’
7 Changes made
aPointer # in module2 via
@=10000 DATA aPointer can

change the data

James Tam

Summary: Passing Pointers As Variable Parameters

Modulel calls Module2 and passes ‘aPointer’ as a variable
parameter e.g., ‘proc2’ in the previous example

module1 Module2 (In: pointer to pointer)
aPointer Points "[—————]aPointer Points
@=100 | o @ = 10000 (@200 @ =100
. J/
Changes made to
aPointer in module2
can change aPointer in
module1.
‘The/Heap’
7 Changes made
aPointer # in module2 via
@=10000 DATA aPointer can

change the data

James Tam

What You Know: How Segmentation Faults Are

Caused By Indexing Beyond The Array Bounds
RAM
list (11| |« OK '
[2] «— OK
[3] — OK g
a.out ~ \[4] . /
S~ o /
~< o /
~<~_/
CORE

«—77?

James Tam

What You Will Learn: How Segmentation Faults
(Possibly Bus Errors) Can Be Caused By Incorrect
Pointer Dereferencing

A full version of this program can be found in Unix under:
/home/23 1/examples/pointers/pointer3.p

program pointer3 (output);

type

IntegerPointer = ” integer;

begin
var numPtr] : IntegerPointer;
writeln('1");
numPtr1” :=100;
writeln('2');
numPtrl ;= NIL;
writeln('3");
numPtr1” :=100;
end.

James Tam

Segmentation Fault

*A ‘memory access violation’ (an attempt is made to access a
part of memory that is ‘forbidden’ to a program).

*Can be caused be programs that index beyond the bounds of
an array.

*Can also be caused by programs that improperly de-
reference pointers.

Bad! ®

Not allowed

Y our program

James Tam

Bus Error

* Caused by a ‘faulty memory access’.

* May occur when a program tries to access a non-existent
memory address.

* Could also be triggered by accessing beyond the bounds of
an array or improperly de-referenced pointers.

Bad!!!\ﬁ/

Y our program

No where??? «——

James Tam

You Should Now Know

» How to declare new types that are pointers to data

» How to declare variables that are pointers

* The difference between static and dynamically allocated memory

* How to dynamically allocate memory

* How to de-allocate memory

* Why and when to set pointers to NIL

» How to access a pointer and how to access what the pointer points to

* How to assign values to a pointer and how to assign values to what the
pointer points to

* What operations can be performed on pointers and how does each one
work

» How to pass pointers as value and variable parameters

» How incorrect pointer usage results in problems with memory accesses
such as segmentation faults and bus errors

James Tam

