
Pointers in Pascal 1

James Tam

Pointers

In this section of notes you will learn
about another type of variable that
stores addresses rather than data

James Tam

Memory: What You Know

•Memory is analogous to a series of slots each of which can
store a single piece of information.

100810071006

100510041003
J. Chan

1002
C. Brown

1001
S. Bill

1000
S.F. Adams

100 ‘j’

4.0

Pointers in Pascal 2

James Tam

Memory: What You Will Learn

•How a memory location can contain the address of another
location in memory.

100810071006

100510041003
J. Chan

1002
C. Brown

1001
S. Bill

1000
S.F. Adams

100 ‘j’ @1007

1999

4.0

James Tam

Why Bother With Pointers?

The answer to this question will be deferred until the next
section of notes (linked lists).

Pointers in Pascal 3

James Tam

Types Of Variables: What You Know
Pascal
Variables

a. Simple
(atomic)

b. Aggregate
(composite)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

1.Data

James Tam

Types Of Variables: What You Will Learn
Pascal
Variables

a. Simple
(atomic)

b. Aggregate
(composite)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

1.Data 2. Addresses
(pointers)

Pointers in Pascal 4

James Tam

Declaration Of Pointer Variables

Format:
type

type name = ^ type pointed to1;
: :

begin
var pointer name : type name;

Example:
type

IntegerPointer = ^integer;
: :

begin
var numPtr1 : IntegerPointer;

1 An alternative is to use the “at-sign” @ instead of the “up-arrow” ^ to
declare a pointer variable (not recommended)

James Tam

Allocating Memory For Pointers

• It involves reserving some dynamic memory and having the
pointer point to that memory.

Format
new (pointer name);

Example
new (numPtr1);

Pointers in Pascal 5

James Tam

De-Allocating Memory For Pointers

• Returning back the dynamically allocated memory (if it’s
needed it can then be re-used for something else).

Format
dispose (pointer name);

Example
dispose (numPtr1);

James Tam

De-Allocating Memory For Pointers: Followup

• Should also be followed by having the pointer no longer
point to the memory that has just been de-allocated

Format:
pointer name := NIL;

Example
numPtr1 := NIL;

Pointers in Pascal 6

James Tam

Using Pointers

Important! Are you dealing with the pointer or what the
pointer is pointing to (allocated memory)?

•Pointer name

•Pointer name ^ (de-reference pointer)

James Tam

Using Pointers

Important! Are you dealing with the pointer or what the
pointer is pointing to (allocated memory)?

•Pointer name

•Pointer name ^ (de-reference pointer)

pointer

pointer X variable

Pointers in Pascal 7

James Tam

Accessing Pointers

Format:
(Pointer)
pointer name

(Memory pointed to)
pointer name ^

James Tam

Accessing Pointers (2)

Example:
type

IntegerPointer = ^integer;
: :

begin
var numPtr1 : IntegerPointer;
new(numPtr1);

(Pointer)
writeln(numPtr1);

(Memory pointed to)

writeln(numPtr1^);

Pointers in Pascal 8

James Tam

Accessing Pointers (2)

Example:
type

IntegerPointer = ^integer;
: :

begin
var numPtr1 : IntegerPointer;
new(numPtr1);

(Pointer)
writeln(numPtr1);

(Memory pointed to)

writeln(numPtr1^);

James Tam

Using Pointers : Allowable Operations

Assignment :=
Relational
• Equality =
• Inequality <>

Pointers in Pascal 9

James Tam

Using Pointers : Assignment

Format:
(Pointer)
pointer name := pointer name;

(Memory pointed to)
pointer name ^ := expression;

Example:
(Pointer)
numPtr1 := numPtr2;

(Memory pointed to)

numPtr1^ := 100;

James Tam

Using Pointers : Allowable Operations (Equality)

Format:
(Pointer)
if (pointer name 1 = pointer name 2) then

(Memory pointed to)
if (pointer name 1^ = pointer name 2^) then

Example:
(Pointer)
if (numPtr1 = numPtr2) then

(Memory pointed to)

if (numPtr1^ = numPtr2^) then

Pointers in Pascal 10

James Tam

Using Pointers : Allowable Operations (Inequality)

Format:
(Pointer)
if (pointer name 1 <> pointer name 2) then

(Memory pointed to)
if (pointer name 1^ <> pointer name 2^) then

Example:
(Pointer)
if (numPtr1 <> numPtr2) then

(Memory pointed to)

if (numPtr1^ <> numPtr2^) then

James Tam

Pointers : First Example

program pointer1 (output);
type

IntegerPointer = ^integer;
begin

var num : integer;
var numPtr1 : IntegerPointer;
var numPtr2 : IntegerPointer;
writeln('Example 1');
num := 10;
new(numPtr1);
new(numPtr2);
numPtr1^ := 100;
numPtr2^ := 100;
writeln('num = ':11, num:3);
writeln('numPtr1^ = ':11, numPtr1^:3);
writeln('numPtr2^ = ':11, numPtr2^:3);

Pointers in Pascal 11

James Tam

Pointers : First Example (2)

if (numPtr1 = numPtr2) then
writeln('Same memory')

else
writeln('Separate memory');

if (numPtr1 ^= numPtr2^) then
writeln('Same data')

else
writeln('Different data');

(* Not allowed *)
(*writeln('numPtr1=',numPtr1); *)

writeln('Example 2');
num := numPtr1^;
writeln('num = ':11, num:3);
writeln('numPtr1^ = ':11, numPtr1^:3);
num := 33;
writeln('num = ':11, num:3);
writeln('numPtr1^ = ':11, numPtr1^:3);
writeln;

James Tam

Pointers: First Example (3)

writeln('Example 3');
numPtr2 ^ := 66;
numPtr1 := numPtr2;
if (numPtr1 = numPtr2) then

writeln('Same memory')
else

writeln('Separate memory');
numPtr2^ := 33;
writeln('numPtr1^ = ':11, numPtr1^);
writeln('numPtr2^ = ':11, numPtr2^);

dispose(numPtr1);
(* dispose(numPtr2); *)

(* Indicating that neither pointer points to any memory *)
numPtr1 := NIL;
numPtr2 := NIL;

end.

Pointers in Pascal 12

James Tam

RAM: How Things Are Divided Up

Dynamic memory: ‘The heap’ for memory
allocated through a pointer

Dynamic memory: ‘The stack’ for
parameters and local variables

Static memory: global constants and
variables

Executable e.g., a.out (binary, machine
language instructions)

Memory that’s allocated for programs
that are running

THE HEAP

new (pointer);

THE STACK

procedure proc (num1 :
integer);

var

num2 : integer;

begin

var num3 : integer;

end;

GLOBALS

program test;

const

SIZE= 10;

var

num : integer;

begin

end.

James Tam

Pointers And Parameter Passing

Value parameters
•In the call to the module what’s passed in is a copy of the value
stored in the parameter.

•The header for the module declares the name of the local
identifier/local variable used to store the value stored in the
parameter.

Variable parameters
•In the call to the module what’s passed in is the address of the
variable.

•The header for the module declares the name of the local pointer that
is used to store the address of the parameter.

•The pointer is automatically de-referenced (to change the original
parameter) whenever the local identifier is accessed.

Pointers in Pascal 13

James Tam

Pointers And Parameter Passing (2)

program parameters (output);

procedure proc (num1 : integer;
var num2 : integer);

begin
num1 := 10;
num2 := 20;

end;

begin
var num1 : integer;
var num2 : integer;
num1 := 1;
num2 := 2;

end.

James Tam

Parameter Passing: Rules Of Thumb You Should
Know For Data Parameters

Value parameters
•Data: What’s passed in cannot change (changes are made to a local
copy).

Variable parameters
•Data: What’s passed in can change (changes are made to the original
parameter)

Pointers in Pascal 14

James Tam

Parameter Passing: Rules Of Thumb You Should
Learn For Pointer Parameters

Value parameters (pointer parameter)
•Pointers: What’s passed in (a pointer) cannot change (changes are made to a
local copy of the pointer).

Variable parameters (pointer parameter)
•Pointers: What’s passed in (a pointer) can change (changes are made to the
original pointer parameter)

Value or variable parameters (what the pointer parameter points to)
•Value parameter:

— A local copy of the pointer is made for the module which contains the address of
a data variable.

— This allows the data referred to by the pointer to be changed.
•Variable parameter:

— The address of the pointer parameter is passed to another local pointer (pointer to
a pointer).

— Again this allows the data referred to by the pointer to be changed.

James Tam

Pointers As Value Parameters

Need to define a type for the pointer first!
Format (defining a type for the pointer):

type
<pointer name> = ^ <type pointed to>;

Format (passing pointer):
procedure procedure name (pointer name (1) : type of pointer (1);

pointer name (2) : type of pointer (2);
: :

pointer name (n) : type of pointer (n));

function function name (pointer name (1) : type of pointer (1);
pointer name (2) : type of pointer (2);

: :
pointer name (n) : type of pointer (n));

Pointers in Pascal 15

James Tam

Pointers As Value Parameters (2)

Example (defining a type for the pointer)
type

CharPointer = ^char;

Example (passing pointer):
procedure proc1 (aCharPointer : CharPointer);
begin

: :
end;

James Tam

Pointers As Variable Parameters

Need to define a type for the pointer first!
Format (defining a type for the pointer):

type
<pointer name> = ^ <type pointed to>;

Format (passing pointer):
procedure procedure name (var pointer name (1) : type of pointer (1);

var pointer name (2) : type of pointer (2);
: :

var pointer name (n) : type of pointer (n));

function function name (var pointer name (1) : type of pointer (1);
var pointer name (2) : type of pointer (2);

: :
var pointer name (n) : type of pointer (n));

Pointers in Pascal 16

James Tam

Pointers As Variable Parameters

Need to define a type for the pointer first!
Example (defining a type for the pointer)
type

CharPointer = ^char;

Example (passing pointer):
procedure proc1 (var aCharPointer : CharPointer);
begin

: :
end;

James Tam

Pointers: Second Example

A full version of this program can be found in Unix under:
/home/231/examples/pointers/pointer2.p

program pointer2 (output);
type

CharPointer = ^char;

procedure proc1 (charPtr : CharPointer);
var

temp : CharPointer;
begin

writeln;
writeln(‘Proc1');
new(temp);
temp^ := 'A';
charPtr := temp;
writeln('temp^ = ', temp^);
writeln('charPtr^ = ', charPtr^);

end;

Pointers in Pascal 17

James Tam

Pointers: Second Example (2)

procedure proc2 (var charPtr : CharPointer);
var

temp : CharPointer;
begin

writeln;
writeln(‘Proc2');
new(temp);
temp^ := 'A';
charPtr := temp;
writeln('temp^ = ', temp^);
writeln('charPtr^ = ', charPtr^);

end;

James Tam

Pointers: Second Example (4)

begin (* Main program *)
var charPtr : CharPointer;
new (charPtr);
charPtr^ := 'a';
writeln;
writeln(‘Main program.');
writeln('charPtr^ = ', charPtr^);
proc1(charPtr);
writeln('After proc1');
writeln('charPtr^ = ', charPtr^);
proc2(charPtr);
writeln('After proc2');
writeln('charPtr^ = ', charPtr^);
writeln;

end. (* End of main program *)

Pointers in Pascal 18

James Tam

Summary: Passing Pointers As Parameters

Reminder of the notation

Name of the
pointer @ XX Contents of the pointer @ XXX

numPtr @ 100 Points @ 1000

The
address
of the

variable

The
address
that the
pointer

‘points to’

James Tam

Summary: Passing Pointers As Value Parameters

Module1 calls Module2 and passes ‘aPointer’ as a value
parameter e.g., ‘proc1’in the previous example

module1

aPointer
@=100

Points

@ = 10000

‘The Heap’

aPointer ^
@=10000 DATA

Module2 (In: copy of aPointer)

aPointer
@=200

Points

@ = 10000

Changes made
in module2 via
aPointer can

change the data

Changes made to
aPointer in module2
only change the local

pointer

Pointers in Pascal 19

James Tam

Summary: Passing Pointers As Variable Parameters

Module1 calls Module2 and passes ‘aPointer’ as a variable
parameter e.g., ‘proc2’ in the previous example

module1

aPointer
@=100

Points

@ = 10000

‘The Heap’

aPointer ^
@=10000 DATA

Module2 (In: pointer to pointer)

aPointer
@=200

Points

@ = 100

Changes made
in module2 via
aPointer can

change the data

Changes made to
aPointer in module2

can change aPointer in
module1.

James Tam

What You Know: How Segmentation Faults Are
Caused By Indexing Beyond The Array Bounds
RAM

a.out

[1]
[2]
[3]
[4]

list OK
OK
OK
OK

???

CORE

Pointers in Pascal 20

James Tam

What You Will Learn: How Segmentation Faults
(Possibly Bus Errors) Can Be Caused By Incorrect

Pointer Dereferencing

A full version of this program can be found in Unix under:
/home/231/examples/pointers/pointer3.p

program pointer3 (output);

type
IntegerPointer = ^ integer;

begin
var numPtr1 : IntegerPointer;
writeln('1');
numPtr1^ := 100;
writeln('2');
numPtr1 := NIL;
writeln('3');
numPtr1^ := 100;

end.

James Tam

Segmentation Fault

•A ‘memory access violation’ (an attempt is made to access a
part of memory that is ‘forbidden’ to a program).

•Can be caused be programs that index beyond the bounds of
an array.

•Can also be caused by programs that improperly de-
reference pointers.
Bad!

Your program

Operating system Not allowed

Pointers in Pascal 21

James Tam

Bus Error

• Caused by a ‘faulty memory access’.
• May occur when a program tries to access a non-existent

memory address.
• Could also be triggered by accessing beyond the bounds of

an array or improperly de-referenced pointers.

Bad!!!

Your program

Operating system

No where???

James Tam

You Should Now Know

• How to declare new types that are pointers to data
• How to declare variables that are pointers
• The difference between static and dynamically allocated memory
• How to dynamically allocate memory
• How to de-allocate memory
• Why and when to set pointers to NIL
• How to access a pointer and how to access what the pointer points to
• How to assign values to a pointer and how to assign values to what the

pointer points to
• What operations can be performed on pointers and how does each one

work
• How to pass pointers as value and variable parameters
• How incorrect pointer usage results in problems with memory accesses

such as segmentation faults and bus errors

