
Linked Lists in Pascal 1

James Tam

Linked Lists

In this section of notes you will learn
how to create and manage a dynamic
list.

James Tam

Arrays

Easy to use but suffer from a number of drawbacks:
1. Fixed size
2. Adding/Deleting elements can be awkward

Linked Lists in Pascal 2

James Tam

Arrays: Fixed Size

•The size of the array cannot be dynamically changed once
the memory has been allocated

•The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter the size of the array: ');
readln(size);

end.

•The workaround is to allocate more space than you need

James Tam

Arrays: Fixed Size

•The size of the array cannot be dynamically changed once
the memory has been allocated

•The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter the size of the array: ');
readln(size);

end.

•The workaround is to allocate more space than you need

The size of the array
must be
predetermined!

Linked Lists in Pascal 3

James Tam

Arrays: Adding Elements In The Middle

123

125

135

155

161

166

167

167

169

177

178

165

James Tam

Arrays: Deleting Elements From The Middle

123

125

135

155

161

166

167

167

169

177

178

Linked Lists in Pascal 4

James Tam

What’s Needed

•A composite type that stores data dynamically and can
allow for the quick addition and removal of elements

Freight “data”

Connector

Start End

James Tam

Alternative To Arrays: Linked Lists

• More complex coding may be required
• Some list management functions are more elegant (and

faster)

Data Ptr

Node

Data Ptr Data Ptr

Linked
List

Head

Linked Lists in Pascal 5

James Tam

Common List Functions

1) Declaring the list
2) Creating a new list
3) Traversing the list (display)
4) Adding a node to the list
5) Searching the list
6) Removing a node from the list

Note: These list functions will be illustrated by portions of an example
that is a modified version of the investors program from the section on
sorting, but implemented as a linked list rather than as array. The
complete program can be found in Unix under:
/home/231/examples/linkedLists/investors.p

James Tam

1. Declaring A Linked List

Format:
(* Part I: Defining a new type for the data (necessary if the data field is
not a built-in type *)

(* Part II: Defining a pointer to the new type “Node” *)
Name of the list pointer = ^ Node;

(* Part III: Defining a new type, a “Node” *)
type

Node = record
data : Name of the list data;
nextPointer : Name of the list pointer;

end;

Part I: What is the data?

Part II: What is the connector linking?

Part III: What is does
the entire freight car
consist of? (Data and
link)

Linked Lists in Pascal 6

James Tam

1. Declaring A Linked List (2)

Example:
type

(* Part I: Defining a new type for the data (necessary because a “Client” is
not a built-in type *)
Client = record

firstName : string [NAME_LENGTH];
lastName : string [NAME_LENGTH];
income : real;
email : string [EMAIL_LENGTH];

end; (* Declaration of record Client *)

(* Part II: Defining a pointer to the new type “Node” *)
NodePointer = ^ Node;

James Tam

1. Declaring A Linked List (3)

(* Part III: Defining a new type, a “Node” *)
Node = record

data : Client;
nextPointer : NodePointer;

end; (* Declaration of record Node *)

Linked Lists in Pascal 7

James Tam

Outline Of The Example Program

addToList

display add modify remove search

Main loop

Blue = Linked
list functions

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

James Tam

Main Procedure: Example Program

begin
var tamjClientList : NodePointer;
var menuSelection : char;
displayInstructions;
createNewList(tamjClientList);
readClientInformation(tamjClientList);
repeat
begin

displayMenu;
readln(menuSelection);
processMenuSelection(tamjClientList,menuSelection);

end; (* repeat-until *)
until (menuSelection = 'Q') OR (menuSelection = 'q');
saveClientInformation(tamjClientList);

end.

Linked Lists in Pascal 8

James Tam

Reminder: How Should Pointers Be Passed

Passing pointers as value parameters:
•When the pointer itself doesn’t have to change in the module (e.g., it
doesn’t point to a different node).

•The node/nodes pointed to by the pointer can still be changed.

Passing pointers as variable parameters:
•When the pointer itself does have to change in the module (e.g., it is
made to point to a different node).

•The node/nodes pointed to by the pointer can still be changed.

James Tam

2. Creating A New List

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

Linked Lists in Pascal 9

James Tam

2. Creating A New List (2)

Description:
The pointer to the beginning of the list is passed into the procedure as a variable
parameter and initialized to NIL signifying that the new list is empty.

Example:
procedure createNewList (var aClientList : NodePointer);
begin

aClientList := NIL;
end; (* createNewList *)

James Tam

Reading The Client Information From A File

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

Linked Lists in Pascal 10

James Tam

Reading The Client Information From A File (2)

procedure readClientInformation (var aClientList : NodePointer);
var

newNode : NodePointer;
newClient : Client;
investorData : text;
inputFileName : string [MAX_FILE_NAME_LENGTH];

begin;
writeln;
write('Enter the name of the input file: ');
readln(inputFileName);
reset(investorData, inputFileName);
writeln('Opening file ', inputFileName, ' for reading');

if EOF (investorData) then
begin

writeln('File ', inputFileName, ' is empty, nothing to read.');
end

James Tam

Reading The Client Information From A File (3)

else
begin

while NOT EOF (investorData) do
begin

new(newNode);
with newClient do
begin

readln(investorData, firstName);
readln(investorData, lastName);
readln(investorData, income);
readln(investorData, email);
readln(investorData);

end; (* with-do: single client records *)
newNode^.data := newClient;
addToList (aClientList, newNode);

end; (* While: reading from file *)

Linked Lists in Pascal 11

James Tam

Reading The Client Information From A File (4)

end; (* else *)
close(investorData);

end; (* readClientInformation *)

James Tam

Processing The Main Menu Of Options

procedure processMenuSelection (var aClientList : NodePointer;
menuSelection : char);

begin
case (menuSelection) of
'D', 'd' :
begin

display (aClientList);
end;

'A', 'a' :
begin

add (aClientList);
end;

'R', 'r' :
begin

remove (aClientList);
end;

Linked Lists in Pascal 12

James Tam

Processing The Main Menu Of Options (2)

'M', 'm' :
begin

modify(aClientList);
end;

'S', 's' :
begin

search(aClientList);
end;

'Q', 'q' :
begin

writeln;
writeln('Thank you for using the investor 2000 (TM) program.');
writeln('Come again!');
writeln;

end;

James Tam

Processing The Main Menu Of Options (3)

else
begin

writeln;
writeln('Please enter one of the following options: d, a, r, m, s or q');
writeln;

end;
end; (* case *)

end; (* End of procedure processMenuSelection *)

Linked Lists in Pascal 13

James Tam

3. Traversing The List: Display

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

James Tam

3. Traversing The List: Display (2)

Description:
Steps (traversing the list to display the data portion of each node
onscreen)
1. Start by initializing a temporary pointer to the beginning of the list.
2. If the pointer is NIL then display a message onscreen indicating

that there are no nodes to display and stop otherwise proceed to
next step.

3. While the temporary pointer is not NIL:
a) Process the node (e.g., display the data onscreen).
b) Move on to the next node by following the node's nextPointer

(set the pointer to point to the next node).

Linked Lists in Pascal 14

James Tam

3. Traversing The List: Display (3)

Example:
procedure display (aClientList : NodePointer);
var

i : integer;
begin

writeln('CLIENT LIST':19);
for i := 1 to 20 do

write('--');
writeln;

if (aClientList = NIL) then
begin

writeln;
writeln('List is empty, no clients to display.');
writeln;

end;

James Tam

3. Traversing The List: Display (4)

while (aClientList <> NIL) do
begin

writeln('First name: ':20, aClientList^.data.firstName);
writeln('Last Name: ':20, aClientList^.data.lastName);
writeln('Income $':20, aClientList^.data.income:0:2);
writeln('Email: ':20, aClientList^.data.email);
writeln;
aClientList := aClientList^.nextPointer;

end; (* While: Traversing the list *)
end; (* displayList *)

Linked Lists in Pascal 15

James Tam

3. Traversing The List: Display (5)

James Tam

3. Traversing The List: Display (6)

Linked Lists in Pascal 16

James Tam

4. Outline For Adding A Node To The End Of The
List

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

James Tam

4. Adding A Node To The End Of The List

Description:
Variables

1. There are two pointers to the list:
a) Current pointer – traverses the list from beginning to end.
b) Previous to first pointer – points to the node that just before to the

end of the list.

Linked Lists in Pascal 17

James Tam

4. Adding A Node To The End Of The List (2)

Steps:
1. Assign the current pointer to the front of the list.
2. If the current pointer is NIL, then the list is empty. Add the node

to the front of the list by changing the head pointer and stop.
3. Otherwise traverse the list with two pointers, one pointer (the

current pointer) goes past the end of the list (to the NIL value), the
other pointer (previous pointer) stays one node behind the current
pointer.

4. Attach the new node to the last node in the list (which can be
reached by the previous pointer).

5. Whether the node is attached to an empty or non-empty list, the
next pointer of the new node becomes NIL (to mark the end of the
list).

James Tam

4. Adding A Node To The End Of The List (3)

Example:
procedure addToList (var aClientList : NodePointer;

newNode : NodePointer);
var

currentNode : NodePointer;
previousNode : NodePointer;

begin
if (aClientList = NIL) then

begin
aClientList := newNode;

end (* If: Adding a new node to the front of the list. *)

Linked Lists in Pascal 18

James Tam

4. Adding A Node To The End Of The List (4)

else
begin

currentNode := aClientList;
while (currentNode <> NIL) do
begin

previousNode := currentNode;
currentNode := currentNode^.nextPointer;

end; (* While : Found the last element in the list. *)
previousNode^.nextPointer := newNode;

end; (* Else: Adding a new node to a non-empty list. *)
newNode^.nextPointer := NIL;

end; (* addToList *)

James Tam

4. Adding A Node To The End Of The List (5)

Linked Lists in Pascal 19

James Tam

4. Adding A Node To The End Of The List (6)

James Tam

4. Adding A Node To The End Of The List (7)

Linked Lists in Pascal 20

James Tam

5. Searching The List

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

James Tam

5. Searching The List (2)

Main variables:
1. A temporary pointer – used to traverse the list.
2. The search key – in this example it’s a string that represents that the

last name of a client.
3. A boolean variable that stores that status of the search (the search

flag). (Start the search by assuming that it’s false that there’s a match
and the flag is set to true when a successful match occurs.

Linked Lists in Pascal 21

James Tam

5. Searching The List (3)

Steps:
1. The temporary pointer starts at the beginning of the list. Since the

search has not yet begin, set the search flag to false.
2. If the temporary pointer is NIL then the list is empty. Display a status

message (e.g., “client list is empty”) to the user and end the search.
3. While the end of the list has not been reached (when the temporary

pointer is NIL) :
a) Compare the last name field of each client to the search key and if

there’s match display all the fields of the client onscreen and set
the boolean to true.

b) Move the temporary pointer onto the next client in the list via the
client’s nextPointer field.

4. When the entire list has been traversed and the search flag is still false
indicate to the user that no successful matches have been found.

James Tam

5. Searching The List (4)

Example:
procedure search (aClientList : NodePointer);
var

desiredName : string [NAME_LENGTH];
isfound : boolean;

begin
if (aClientList = NIL) then

begin
writeln('Client list is empty: Nothing to search.');

end (* If: Empty list, stop the search. *)
else
begin

write('Enter last name of contact that you wish to search for: ');
readln(desiredName);
isFound := false;
writeln;

Linked Lists in Pascal 22

James Tam

5. Searching The List (5)

while (aClientlist <> NIL) do
begin

if (desiredName = aClientList^.data.lastName) then
begin

isFound := true;
writeln('Found contact':20);
writeln('First name :':20, aClientList^.data.firstName);
writeln('Last name :':20, aClientList^.data.lastName);
writeln('Income $':20, aClientList^.data.income:0:2);
writeln('Email :':20, aClientList^.data.email);
writeln;

end; (* If: Match was found. *)
aClientList := aClientList^.nextPointer;

end; (* While: Finished traversing the list. *)
if (isFound = False) then

writeln('No clients with the last name of ''', desiredName, ''' were '
'found in list');

end; (* Else: Non-empty list was searched. *)
end; (* search *)

James Tam

Searching The List (6)

Linked Lists in Pascal 23

James Tam

5. Searching The List (7)

James Tam

5. Searching The List (8)

Linked Lists in Pascal 24

James Tam

5. Searching The List (9)

James Tam

6. Removing A Node From The List

addToList

display add modify remove search

Main loop

addToList

main

display
Instructions

createNew
List

readClient
Information

display
Menu

saveClient
Information

process
Menu-
Selection

Linked Lists in Pascal 25

James Tam

6. Removing A Node From The List (2)

Description:
Main variables:

1. A temporary pointer that points to the node to be deleted. It is needed
so that the program can retain a reference to this node and free up the
memory allocated for it after the node has been ‘bypassed’ (step 4A
and 4 B on the next slides).

2. A previous pointer that points to the node just prior to the one to be
deleted. The nextPointer field of this pointer will be set to skip over
the node to be deleted and will instead point to the node that
immediately follows.

3. The head pointer. The actual pointer (and not a copy) is needed if
the first node is deleted.

4. The search key – in this example it is a string that represents that the
last name of a client.

5. A boolean variable that stores that status of the search (the search
flag). (Start the search by assuming that it’s false that there’s a match
and the flag is set to true when a successful match occurs.

James Tam

6. Removing A Node From The List (3)

Steps
1. Initialize the main variables.

a) The temporary pointer starts at the front of the list.
b) The boolean flag is set to false (no matches have been found yet).
c) The previous pointer is set to NIL (to signify that there is no element

prior to the first element).
2. If the list is empty (temporary pointer is NIL) display a status message to the

user (e.g., “client list is empty”) and end the removal process.
3. While the end of the list has not been reached (temporary pointer is not NIL)

AND no matches have been found yet (boolean flag is false) :
a) Compare the search key with the last name field of the client node

referred to by the temporary pointer.
b) If there’s a match then set the search flag to true (it’s true that a match

has been found now).
c) If no match has been found set the previous pointer to the client referred

to by the temporary pointer and move the temporary pointer to the next
client in the list.

Linked Lists in Pascal 26

James Tam

6. Removing A Node From The List (4)

4. (At this pointer either the whole list has been traversed or there has been
successful match and the search has terminated early):

a. If the search flag is set to true then a match has been found.
i. If the first node is the one to be deleted (previous pointer is NIL) then set the

head pointer to the second client in the list.
ii. If any other node is to be deleted then bypass this node by setting the

nextPointer field of the node referred to by the previous pointer to the node
immediately following the node to be deleted.

iii. In both cases the temporary pointer still refers to the node to be deleted. Free
up the allocated memory using the temporary pointer.

b. If the search flag is set to false no matches have been found, display a status
message to the user (e.g., “no matches found”).

James Tam

6. Removing A Node From The List (5)

Example:
procedure remove (var aClientList : NodePointer);
var

desiredName : string[NAME_LENGTH];
previousFirst : NodePointer;
temp : NodePointer;
isFound : boolean;

begin
isFound := false;
previousFirst := NIL;
temp := aClientList;

Linked Lists in Pascal 27

James Tam

6. Removing A Node From The List (6)

(* Case 1: Empty list *)
if (temp = NIL) then
begin

writeln('List is already empty, no clients to remove.');
end (* If: empty list *)

(* Case 2: Non-empty list *)
else
begin

write('Enter last name of client to remove: ');
readln(desiredName);

James Tam

6. Removing A Node From The List (7)

while (temp <> NIL) And (isfound = false) do
begin

if (temp ^.data.lastName = desiredName) then
begin

isfound := true;
end (* If: Found a match *)
else
begin

previousFirst := temp;
temp := temp^.nextPointer;

end; (* Else: No match found, continue search *)
end; (* While loop: To iterate through the client list. *)

Linked Lists in Pascal 28

James Tam

6. Removing A Node From The List (8)

(* Case 2A or 2B: Removing a node in the list. *)
if (isFound = true) then
begin

writeln('Removing first instance of client with surname of ',
desiredName, ':');

writeln('First name :':15, temp^.data.firstName);
writeln('Last name :':15, temp^.data.lastName);
writeln('Income $':15, temp^.data.income:0:2);
writeln('Email :':15, temp^.data.email);
writeln;

(* Case 2A: Removing the first node from the list. *)
if (previousFirst = NIL) then
begin

aClientList := aClientList^.nextPointer;
end (* If: Removing the first node. *)

James Tam

6. Removing A Node From The List (9)

(* Case 2B: Removing any node except for the first. *)
else
begin

previousFirst^.nextPointer := temp^.nextPointer;
end; (* Else: removing any node except for the first. *)

dispose(temp);
end (* If: Match found and a node was deleted. *)

(* Case 2C: The entire list was searched but no matches were found. *)
else
begin

writeln('No clients with a surname of ', desiredName, ' found in the '
'list of clients.');

end; (* Else: No matches found. *)
end; (* Else: Non-empty list. *)

end; (* remove *)

Linked Lists in Pascal 29

James Tam

Removing A Node From The List (10)

Case 1: Empty List

James Tam

Removing A Node From The List (11)

Case 2A: Removing the first node

Linked Lists in Pascal 30

James Tam

6. Removing A Node From The List (12)

Case 2B: Removing any node except for the first

James Tam

6. Removing A Node From The List (13)

Case 2C: Removing a node a non-empty list but no matches
were found.

Linked Lists in Pascal 31

James Tam

You Should Now Know

•What is a linked list
•What are the advantages of using a linked list over using an
array

•What is the disadvantage of using a linked list over using an
array

•Common list operations
•Declaring a list
•Creating a new list and initializing the list with data
•Traversing the list (e.g., to display the contents of the nodes)
•Adding new nodes to the list
•Searching the list
•Deleting an existing node from the list

