
Homogeneous composite types: arrays 1

James Tam

Arrays

In this section of notes you will be introduced to
a composite type where all elements must be of
the same type (homogeneous): arrays

James Tam

Types Of Variables

Pascal
Variables

1. Simple
(atomic)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

2. Aggregate
(composite)

Homogeneous composite types: arrays 2

James Tam

Types Of Variables

Pascal
Variables

1. Simple
(atomic)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

2. Aggregate
(composite)

James Tam

Why Bother With Composite Types?

For a compilable example look in Unix under:
/home/231/tamj/examples/arrays/classList1.p

const
CLASS_SIZE = 5;

begin
var stu1 : real;
var stu2 : real;
var stu3 : real;
var stu4 : real;
var stu5 : real;
var total : real;
var average : real;

Homogeneous composite types: arrays 3

James Tam

Why Bother With Composite Types? (2)

write('Enter grade for student number 1: ');
readln(stu1);
write('Enter grade for student number 2: ');
readln(stu2);
write('Enter grade for student number 3: ');
readln(stu3);
write('Enter grade for student number 4: ');
readln(stu4);
write('Enter grade for student number 5: ');
readln(stu5);
total := stu1 + stu2 + stu3 + stu4 + stu5;
average := total / CLASS_SIZE;
writeln('The average grade is ', average:6:2, '%');

James Tam

With Bother With Composite Types? (3)

(* Printing the grades for the class. *)
writeln('Student1: ', stu1:6:2);
writeln('Student2: ', stu2:6:2);
writeln('Student3: ', stu3:6:2);
writeln('Student4: ', stu4:6:2);
writeln('Student5: ', stu5:6:2);

end.

Homogeneous composite types: arrays 4

James Tam

With Bother With Composite Types? (3)

(* Printing the grades for the class. *)
writeln('Student1: ', stu1:6:2);
writeln('Student2: ', stu2:6:2);
writeln('Student3: ', stu3:6:2);
writeln('Student4: ', stu4:6:2);
writeln('Student5: ', stu5:6:2);

end.

NO!

James Tam

What’s Needed

•A composite variable that is a collection of another type.
• The composite variable can be manipulated and passed throughout the

program as a single entity.
• At the same time each element can be accessed individually.

•What’s needed…an array!

Homogeneous composite types: arrays 5

James Tam

Declaring Arrays

As with any other variable, you must first create an array in
memory by declaring an instance.
Format:

name: array [low index..high index] of element type;

Example:
const

CLASS_SIZE = 5;
: :

var classGrades : array [1..CLASS_SIZE] of real;

classGrades [1]
[2]
[3]
[4]
[5]

James Tam

To manipulate an array you need to first indicate which array is being accessed
• Done via the name of the array e.g., “classGrades”

If you are accessing a single element, you need to indicate which element that you
wish to access.
• Done via the array index e.g., “classGrades[2]”

Accessing Data In The Array

classGrades [1]

[2]

[3]
[4]
[5]

classGrades [1]

[2]

[3]
[4]
[5]

Using only the name of the
array refers to the whole
array

Use the array name and a
subscript (the ‘index’) refers
to a single element

Homogeneous composite types: arrays 6

James Tam

Assigning Data To The Array

Format:

(Whole array) (One element)

name of array := value; name of array [index] := value;

Examples (assignment via the assignment operator):

(Whole array) (One element)

firstArray := secondArray; classGrades [1] := 100;

James Tam

Assigning Data To The Array (2)
Examples (assigning values via read or readln):

(Single element)

readln(classGrades[1]);

(Whole array – all elements)

for i: = 1 to CLASS_SIZE do

begin

write('Input grade for student No. ', i, ': ');

readln(classGrades[i]);

end;

Homogeneous composite types: arrays 7

James Tam

Assigning Data To The Array (3)

Example: (Whole array – all elements: Character arrays only)

var charArray : array [1..SIZE] of char;

readln(charArray);

Important note: arrays cannot be passed as a parameters to read or readln (except for
character arrays)

James Tam

Accessing The Data In The Array

Examples (displaying information):

(Single element)

writeln(classGrades[1]);

(Whole array – all elements)

for i := 1 to CLASS_SIZE do

writeln('Grade for student No. ', i:2, ' ', classGrades[i]:6:2);

Homogeneous composite types: arrays 8

James Tam

Accessing The Data In The Array (2)

Example: (Whole array – all elements: Character arrays only)

var charArray : array [1..SIZE] of char;

write(charArray);

Important note: arrays cannot be passed as a parameters to write or writeln (except for
character arrays)

James Tam

Revised Version Using An Array

For a compilable example look in Unix under:
/home/231/tamj/examples/arrays/classList2.p
const

CLASS_SIZE = 5;
begin

var classGrades : array [1..CLASS_SIZE] of real;
var i : integer;
var total : real;
var average : real;

total := 0;

Homogeneous composite types: arrays 9

James Tam

Class Example Using An Array (2)
for i := 1 to CLASS_SIZE do

begin

write('Enter grade for student no. ', i, ': ');

readln (classGrades[i]);

total := total + classGrades[i];

end;

average := total / CLASS_SIZE;

writeln;

writeln('The average grade is ', average:6:2, '%');

for i := 1 to CLASS_SIZE do

writeln('Grade for student no. ', i, ' is ', classGrades[i]:6:2, '%');

James Tam

Passing Arrays As Parameters

1. Declare a type for the array.
e.g.
const

CLASS_SIZE = 5;
type

Grades = array [1..CLASS_SIZE] of real;

• Declaring a type does not create an instance
- A type only describes the attributes of a new kind of variable that can be

created and used.
- No memory is allocated.

Homogeneous composite types: arrays 10

James Tam

Passing Arrays As Parameters (2)

2. Declare an instance of this type.
e.g., var lecture01 : Grades;
•Memory is allocated!

3. Pass the instance to functions/procedures as you would any
other parameter.

(Function/procedure call)
displayGrades (lecture01, average);

(Function/procedure definition)
procedure displayGrades (lecture01 : Grades;

average : real);

James Tam

Passing Arrays As Parameters: An Example

The full example can be found in Unix under
/home/231/tamj/examples/classList3.p):

program classList (input, output);

const
CLASS_SIZE = 5;

type
Grades = array [1..CLASS_SIZE] of real;

procedure tabulateGrades (var lecture01 : Grades;
var average : real);

var
i : integer;
total : real;

Homogeneous composite types: arrays 11

James Tam

Passing Arrays As Parameters: An Example (2)

begin (* tabulateGrades *)
total := 0;
for i := 1 to CLASS_SIZE do
begin

write('Enter grade for student no. ', i, ': ');
readln(lecture01[i]);
total := total + lecture01[i];

end;
average := total / CLASS_SIZE;
writeln;

end; (* tabulateGrades *)

James Tam

Passing Arrays As Parameters: An Example (3)

procedure displayGrades (lecture01 : Grades;
average : real);

var
i : integer;

begin
writeln('Grades for the class...');
for i := 1 to CLASS_SIZE do

writeln('Grade for student no. ', i, ' is ', lecture01[i]:6:2, '%');
writeln('The average grade is ', average:6:2, '%');
writeln;

end;

Homogeneous composite types: arrays 12

James Tam

Passing Arrays As Parameters: An Example (4)

begin
var lecture01 : Grades;
var average : real;
tabulateGrades (lecture01, average);
displayGrades (lecture01, average);

end.

James Tam

Returning Arrays From Functions

1. Declare a type for the array.
e.g.
const

CLASS_SIZE = 5;
type

Grades = array [1..CLASS_SIZE] of real;

2. Declare an instance of this type.
e.g.,
var lecture01 : Grades;

3. Return the instance of the array as you would any other return value.
(Function call)
lecture01 := fun (lecture01);

(Function definition)
function fun (lecture01 : Grades): Grades;

Homogeneous composite types: arrays 13

James Tam

Segmentation Faults And The Array Bounds (2)

RAM

a.out

[1]
[2]
[3]
[4]

list OK
OK
OK
OK

???

James Tam

Segmentation Faults And The Array Bounds (2)

RAM

a.out

OK
OK
OK
OK

CORE
(Big file)

Wav file from “The SImpsons”

[1]
[2]
[3]
[4]

list

???

Homogeneous composite types: arrays 14

James Tam

Segmentation Faults And The Array Bounds (3)

• Synopsis: When using an array take care not to exceed the bounds.
• Ways of reducing the likelihood of exceeding the bounds of the array:

1. Use a constant in conjunction with arrays e.g.,
const

MAX = 5;

2. Refer to the constant when declaring an array:
var aList : array [1..MAX] of integer;

3. Refer to the constant when declaring the type for the array:
type

List = array [1..MAX] of integer;

4. Refer to the constant when iterating/traversing through the array:
for i := 1 to MAX do

writeln('Grade for student no. ', i, ' is ', lecture01[i]:6:2, '%');

James Tam

Segmentation Faults And The Array Bounds (4)

5. Make sure that array indices are properly initialized.
• You may need to verify this assumption with debugging statements.

Incorrect /: What is the
current value of index ‘i’?

program array1 (output);

begin

var i : integer;

var list : array [1..2] of integer;

list [i] := i;

writeln (list[i]);

end.

Correct ☺: Always initialize your
variables before using them: in this
case the index ‘i’ is set to a value
within the bounds of the array
before it’s used.

program array2 (output);

begin

var i : integer;

var list : array [1..2] of integer;

i := 2;

list [i] := i;

writeln (list[i]);

end.

Homogeneous composite types: arrays 15

James Tam

The String Type

It is a special type of character array.
Format for declaration:
var name : string [SIZE];

Example declaration:
var firstName : string [MAX];

James Tam

Benefits Of The String Type

1. The end of array is marked.
2. Many operations have already been implemented.

Homogeneous composite types: arrays 16

James Tam

Marking The End Of The Array

The full example can be found in Unix under the path:
/home/231/tamj/examples/arrays/stringExample.p

program stringExample (output);
const

MAX = 8;
begin

var list1 : array [1..MAX] of char;
var list2 : string[MAX];
list1 := 'abcdefg';
list2 := 'abcdefg';
writeln('-', list1, '-');
writeln('-', list2, '-');

end.

James Tam

The Contents Of The String “List2”

END‘g’‘f’‘e’‘d’‘c’‘b’‘a’

[8][7][6][5][4][3][2][1]

Homogeneous composite types: arrays 17

James Tam

Strings Are A Built-In Type1

• This means that they can be passed as parameter in the same
fashion as other built in types, no type needs to be defined
beforehand.

• Format:
procedure procedureName (stringName : string);

OR
procedure procedureName (var stringName : string);

• Examples:
procedure proc1 (list : string);

OR
procedure proc2 (var list : string);

1 For many programming languages and some versions of Pascal

James Tam

When To Use Arrays Of Different Dimensions

•Determined by the data – the number of categories of information
determines the number of dimensions to use.
Examples:

•(1D array)
•Tracking grades for a class
•Each cell contains the grade for a student i.e., grades[i]
•There is one dimension that specifies which student’s grades are being accessed

•(2D array)
•Expanded grades program
•Again there is one dimension that specifies which student’s grades are being
accessed

•The other dimension can be used to specify the lecture section

One dimension (which student)

Homogeneous composite types: arrays 18

James Tam

When To Use Arrays Of Different Dimensions (2)

•(2D array continued)
Student

Lecture
section

:

L01

L02

L03

L0N

L05

L04

Third
student

…
Second
student

First
student

James Tam

When To Use Arrays Of Different Dimensions (3)

•(2D array continued)
•Notice that each row is merely a 1D array
•(A 2D array is an array containing rows of 1D arrays)

L02

L07

L01

L03

L04

[1] [2] [3] [4]
[1]

[2]

[3]

[4]

[5]

[6]

[7]

Columns

Rows

L06

L05

Homogeneous composite types: arrays 19

James Tam

When To Use Arrays Of Different Dimensions (4)

•(3D array – take the 2D array but allow for multiple courses).
•The third dimension specifies which course grades are being tracked.

Student (X = column)
Lecture
(Y = row)

Course (Z)

Note:

1. The standard approach for specifying the dimensions is to specify
the row coordinate (Y) and then the column coordinate (X).

2. The size of a dimension must be the same for all elements along that
dimension e.g., all rows must be of the same size

James Tam

When To Use Arrays Of Different Dimensions (5)

L06

L01

L02

L03

L07

L05

L04

Student 3 …Student 2Student 1

CPSC 231
CPSC 233

CPSC 235

Homogeneous composite types: arrays 20

James Tam

Declaring Multi-Dimensional Arrays

Format:
(Two dimensional arrays)
Name : array [min..max, min..max] of type;

(Three dimensional arrays)
Name : array [min..max, min..max, min..max] of type;

Example:
var johnFinances : array [1..3, 1..7] of real;
var cube : array[1..6, 1..6, 1..6] of char;

Rows Columns

James Tam

Declaring Multi-Dimensional Arrays As A Type

Format:
Type declaration

Type name = array [min..max, min..max] of element type;
Type name = array [min..max, min..max, min..max] of element type;

Variable declaration
array name : Type name;

Homogeneous composite types: arrays 21

James Tam

Declaring Multi-Dimensional Arrays As A Type (2)

Example
Type declaration

Finances = array [1..3, 1..7] of real;
Cube = array [1..6, 1..6, 1..6] of char;

Variable declaration
var johnFinances : Finances;
var aCube : Cube;

James Tam

Accessing / Assigning Values To Elements

Format:
name [row][column] := name [row][column];

Example:
finances [1][1] := 4500;
writeln (finances[1][1]);

Homogeneous composite types: arrays 22

James Tam

Multi-Dimensional Arrays And Input/Output

•Arrays of more than one dimension (including multi-
dimensional character arrays) cannot be passed as parameters to:
read, readln, write, writeln.

•Only one-dimensional character arrays can be passed as
parameters to these procedures.

James Tam

Example 2D Array Program: A Character-Based
Grid

You can find the full program in Unix under:
/home/231/tamj/examples/arrays/grid.p

Homogeneous composite types: arrays 23

James Tam

A Character-Based Grid

program gridExample (input, output);

const
MAX_ROWS = 4;
MAX_COLUMNS = 4;
NO_COMBINATIONS = 10;

type
Grid = array[1..MAX_ROWS, 1..MAX_COLUMNS] of char;

James Tam

A Character-Based Grid (2)

function generateElement (temp : integer) : char;
var

anElement : char;
begin

case (temp) of
1, 2, 3, 4, 5, 6 :
anElement := ' ';

7, 8, 9:
anElement := '*';

10:
anElement := '.';

Homogeneous composite types: arrays 24

James Tam

A Character-Based Grid (3)

else
begin

writeln('<< Error with the random no. generator.>>');
writeln('<< Value should be 1-10 but random value is ', temp);
anElement := '!';

end;
end;
generateElement := anElement;

end;

James Tam

A Character-Based Grid (4)

procedure initialize (var aGrid : Grid);
var

r : integer;
c : integer;
temp : integer;

begin
for r := 1 to MAX_ROWS do
begin

for c := 1 to MAX_COLUMNS do
begin

temp := random(NO_COMBINATIONS) + 1;
aGrid[r][c] := generateElement(temp);

end;
end;

end;

Homogeneous composite types: arrays 25

James Tam

A Character-Based Grid (5)

procedure display (aGrid : Grid);
var

r : integer;
c : integer;

begin
for r := 1 to MAX_ROWS do
begin

for c := 1 to MAX_COLUMNS do
begin

write(aGrid[r][c]);
end;
writeln;

end;
end;

James Tam

A Character-Based Grid (6)

procedure displayLines (aGrid : Grid);
var

r : integer;
c : integer;

begin
for r := 1 to MAX_ROWS do
begin

writeln(' - - - -');
for c := 1 to MAX_COLUMNS do
begin

write('|', aGrid[r][c]);
end;
writeln('|');

end;
writeln(' - - - -');

end;

Homogeneous composite types: arrays 26

James Tam

A Character-Based Grid (7)

begin
var aGrid : Grid;
initialize(aGrid);
writeln('Displaying grid');
writeln('===============');
display(aGrid);
writeln;
writeln('Displaying grid with bounding lines');
writeln('==========================');
displayLines(aGrid);

end.

James Tam

You Should Now Know

•What is the difference between simple types (atomic) and composite types
(aggregate).

•What is the benefit of using homogeneous composite types (arrays)
•How to declare arrays.
•How to access or assign values to array elements.
•How to work with an entire array (e.g., access or assign values to different
parts).

•How to pass instances of arrays into functions and procedures and how to
return an array from a function.

•What is a segmentation fault and what is a core dump file.
•How to declare and to use instances of a string type.
•The number of dimensions to declare for an array.
•How to declare and traverse arrays of multiple dimensions.
•How to display “bounding lines” around array elements as a formatting
technique.

