CPSC 231: Asst 2 Extra Material: Number conversions and Non-decimal based math: Questions

Jordan Kidney

January 24, 2006

1 Common notation

- $N_B = N$ is the number, B is the base the number is represented in.
- $\bullet \ \, \rm http://www.cstc.org/data/resources/60/convexp.html$
- $\bullet \ http://www.mathpath.org/concepts/Num/conv.htm$
- http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/student-binary.html (The Binary System)

2 Number conversions

2.1 Decimal to binary

Convert the following from base 10 (decimal) to base 2 (binary):

- **2.1.1** 6₁₀
- **2.1.2** 12₁₀
- **2.1.3** 23₁₀
- **2.1.4** 256₁₀
- **2.1.5** 1529₁₀

2.2 Decimal to octal or hexadecimal or binary

Convert the following from base 10 (decimal) to base 2 (binary), base 8 (octal) and base 16 (hexadecimal) :

- **2.2.1** 12₁₀
- **2.2.2** 35₁₀
- **2.2.3** 256₁₀
- **2.2.4** 512₁₀
- **2.2.5** 1189₁₀

3 Non-decimal based math

Perform the following binary additions and subtractions:

Note: For the subtractions use borrows (where needed) rather than employing the complement and add technique.

- **3.0.6** $10010101_2 + 01101001$
- **3.0.7** $1110_2 + 0010_2$
- **3.0.8** $01100110_2 01100001_2$
- **3.0.9** $0110_2 0010_2$