
Beyond Base 10: Non-decimal Based Number Systems

- •What is the decimal based number system?
- How do other number systems work (binary, octal and hex)
- •How to convert to and from nondecimal number systems to decimal
- ·Binary math

mes Tam

Binary

Base two

Employs two unique symbols (0 and 1)

Largest decimal value that can be represented by 1 binary digit = 1 = base(2) - 1

ames Tam

Decimal value	Binary value	Decimal value	Binary value
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Why Bother With Binary?

Representing information

- ASCII (American Standard Code for Information Interchange)
- Unicode

It's the language of the computer

Representing Information: ASCII

Decimal	Binary	ASCII
0 – 31	00000000 - 00011111	Invisible (control characters)
32 – 47	00100000 - 00101111	Punctuation, mathematical operations
48 - 57	00110000 - 00111001	Characters 0 - 9
58 – 64	00111010 - 01000000	Comparators and other miscellaneous characters : ; ? @
65 - 90	01000001 - 01011010	Alphabetic (upper case A - Z)
91 – 96	01011011 - 01100000	More miscellaneous characters [\]^_'
97 – 122	01100001 - 01111010	Alphabetic (lower case a - z)
123 – 127	01111011 - 01111111	More miscellaneous characters { } ~ DEL

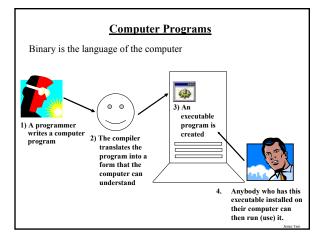
Representing Information: ASCII (2)

Uses 7 bits to represent characters

Max number of possibilities = 2^7 = 128 characters that can be represented

e.g., 'A' is 65 in decimal or 01000001in binary. In memory it looks like this:

0	1	0	0	0	0	0	1


omer Tam

Representing Information: Unicode

Uses 16 bits (or more) to represent information

Max number of possibilities = 2^{16} = 65536 characters that can be represented (more if more bits are used)

tomor Tom

Octal

Base eight

Employs eight unique symbols (0 - 7)

Largest decimal value that can be represented by 1 octal digit = 7 = base(8) - 1

James 7

Decimal value	Octal value	Decimal value	Octal value
0	0	8	10
1	1	9	11
2	2	10	12
3	3	11	13
1	4	12	14
5	5	13	15
6	6	14	16
7	7	15	17

Uses Of Octal (Assembly Language)

Machine	Octal	PDP -11 assembly
language	value	language
1010111000000	012700	MOV #4, R0
1001010000101	011205	MOV (R2), R5

Example from Introduction to the PDP-11 and its Assembly Language by Frank T

James Tan

Hexadecimal (Hex)

Base sixteen

Employs sixteen unique symbols (0 - 9, followed by A - F)

Largest decimal value that can be represented by 1 hex digit = 15

nes Tam

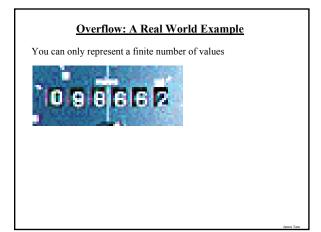
Table of Hex Values

Decimal value	Hexadecimal value	Decimal value	Hexadecimal value
0	0	9	9
1	1	10	Α
2	2	11	В
3	3	12	С
4	4	13	D
5	5	14	Е
6	6	15	F
7	7	16	10
8	8	17	11

. .

Uses Of Hexadecimal (Assembly Language)

Machine	Hexadecimal	680X0 assembly	
language	value	language	
1010011000001	14C1	MOV.B D1, (A2)+	
110000011100000	60E0	BRA NEXT	


example from 68000 Family Assembly Language by Clements

Summary (Decimal, Binary, Octal, Hex)

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	В
4	0100	4	4	12	1100	14	С
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	Е
7	0111	7	7	15	1111	17	F

James Tam

Overflow: Binary

Occurs when you don't have enough bits to represent a value ("wraps around" to z

Binary (1 bit)	Value
0	0
1	1
0	0
1	1

-	2010)	
	Binary (2 bits)	Value
	00	0
	01	1
	10	2
	11	3
	00	0

10	-
11	3
00	0
01	1
10	2
11	3
:	:

Binary (3 bits)	Value
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7
000	0
001	1

Arbitrary Number Bases

Base N

Employs N unique symbols

Largest decimal value that can be represented by 1 digit = Base

Converting Between Different Number Systems

Binary to/from octal

Binary to/from hexadecimal

Octal to/from hexadecimal

Decimal to any base

Any base to decimal

Binary To Octal

3 binary digits equals one octal digit (remember 2³=8)

Form groups of three starting at the decimal

- For the integer portion start grouping at the decimal and go left
- For the fractional portion start grouping at the decimal and go right

e.g. $(101)(100)_{=}$???₈

Octal To Binary

1 octal digit equals = 3 binary digits

Split into groups of three starting at the decimal

- •For the integer portion start splitting at the decimal and go left
- •For the fractional portion start splitting at the decimal and go right

001 010 .1012

Binary To Hexadecimal

4 binary digits equals one hexadecimal digit (remember 2⁴=16)

Form groups of four at the decimal

- •For the integer portion start grouping at the decimal and go left
- •For the fractional portion start grouping at the decimal and go right

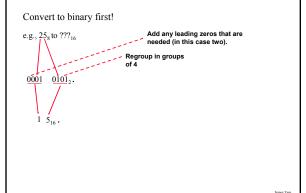
e.g.,
$$1000.0100_2 = ???_{16}$$

8 · 4_{16}

Hexadecimal To Binary

1 hex digit equals = 4 binary digits

Split into groups of four starting at the decimal


- For the integer portion start splitting at the decimal and go left
- For the fractional portion start splitting at the decimal and go right

e.g.,
$$A3_6 = ????_2$$

Octal To Hexadecimal

Convert to binary first!

Octal To Hexadecimal

Hexadecimal To Octal

Hexadecimal To Octal

Add any leading zeros that are needed (in this case one).

Regroup in groups of 3

Decimal To Any Base

Split up the integer and the fractional portions

- 1) For the integer portion:
- a. Divide the integer portion of the decimal number by the target base.
- b. The remainder becomes the first integer digit of the number in the target
- c. The quotient becomes the new integer value.
- d. Divide the new integer value by the target base.
- e. The new remainder becomes the second integer digit of the converted
- f. Continue dividing until the quotient is less than the target base and this quotient becomes the last integer digit of the converted number.

Decimal To Any Base (2)

- 2) For the fractional portion:
- a. Multiply by the target base.
- b. The integer portion (if any) of the product becomes the first rational digit of the converted number.
- c. The non-rational portion of the product is then multiplied by the target
- d. The integer portion (if any) of the new product becomes the second rational digit of the converted number.
- e. Keep multiplying by the target base until either the resulting product equals zero or you have the desired number of places of precision.

Decimal To Any Base (2)

e.g., 9_{10} to $????_2$ 9/2 q = 3(r = 1) 4/2 q = 3(r = 0)2/2: q = 1 = 0Stop dividing! (quotient less than target base)

es Tam

Any Base To Decimal

Multiply each digit by the base raised to some exponent, and sum the resulting products.

Base = b

Value in decimal = (digit7*b³) + (digit6*b²) + (digit5*b¹) + (digit4*b⁰) + (digit3*b⁻¹) + (digit2*b⁻²) + (digit1*b⁻³)

The value of this exponent will be determined by the position of the digit.

Any Base To Decimal (2)

e.g., 12₈ to ???₁₀

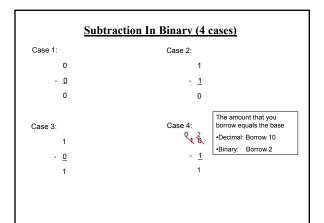
1 0 Position of the digits

1 2 Number to be converted

Base = 8

Value in decimal =
$$(1*8^1) + (2*8^0)$$

= $(1*8) + (2*1)$
= $8 + 2$
= 10_{10}


. .

Addition In Binary: Five Cases

Case 1: sum = 0, no carry out
$$0 \\ + \underline{0} \\ 0 \\ 1$$

Addition In Binary: Five Cases (2)

James Ta

You Should Now Know

- •What is meant by a number base.
- •How binary, octal and hex based number systems work and what role they play in the computer.
- •What is overflow, why does it occur and when does it occur.
- •How to/from convert between non-decimal based number systems and decimal.
- •How to perform simple binary math (addition and subtraction).

James Tan